St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implied motion activation in cortical area MT can be explained by visual low-level features

Thumbnail
View/Open
ImpliedMotionActivationJoCN2010.pdf (641.2Kb)
Date
06/2011
Author
Lorteije, Jeannette A. M.
Barraclough, Nick E.
Jellema, Tjeerd
Raemaekers, Mathijs
Duijnhouwer, Jacob
Xiao, Dengke
Oram, Mike W.
Lankheet, Martin J. M.
Perrett, David I.
van Wezel, Richard J. A.
Keywords
Double magnetic induction
Feature-based attention
Representational momentum
Static images
STS neurons
Human brain
Macaque MT
Optic flow
Responses
FMRI
BF Psychology
Metadata
Show full item record
Abstract
To investigate form-related activity inmotion-sensitive cortical areas, we recorded cell responses to animate implied motion in macaque middle temporal (MT) and medial superior temporal (MST) cortex and investigated these areas using fMRI in humans. In the single-cell studies, we compared responses with static images of human or monkey figures walking or running left or right with responses to the same human and monkey figures standing or sitting still. We also investigated whether the view of the animate figure (facing left or right) that elicited the highest response was correlated with the preferred direction for moving random dot patterns. First, figures were presented inside the cell's receptive field. Subsequently, figures were presented at the fovea while a dynamic noise pattern was presented at the cell's receptive field location. The results show that MT neurons did not discriminate between figures on the basis of the implied motion content. Instead, response preferences for implied motion correlated with preferences for low-level visual features such as orientation and size. No correlation was found between the preferred view of figures implying motion and the preferred direction for moving random dot patterns. Similar findings were obtained in a smaller population of MST cortical neurons. Testing human MT+ responses with fMRI further corroborated the notion that low-level stimulus features might explain implied motion activation in human MT+. Together, these results suggest that prior human imaging studies demonstrating animate implied motion processing in area MT+ can be best explained by sensitivity for low-level features rather than sensitivity for the motion implied by animate figures.
Citation
Lorteije , J A M , Barraclough , N E , Jellema , T , Raemaekers , M , Duijnhouwer , J , Xiao , D , Oram , M W , Lankheet , M J M , Perrett , D I & van Wezel , R J A 2011 , ' Implied motion activation in cortical area MT can be explained by visual low-level features ' , Journal of Cognitive Neuroscience , vol. 23 , no. 6 , pp. 1533-1548 . https://doi.org/10.1162/jocn.2010.21533
Publication
Journal of Cognitive Neuroscience
Status
Peer reviewed
DOI
https://doi.org/10.1162/jocn.2010.21533
ISSN
0898-929X
Type
Journal article
Rights
Copyright © 2011 Massachusetts Institute of Technology
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/2003

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter