Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBleak, Collin Patrick
dc.contributor.editorJonoska, Nataša
dc.contributor.editorSavchuk, Dmytro
dc.date.accessioned2020-06-01T10:30:05Z
dc.date.available2020-06-01T10:30:05Z
dc.date.issued2020-05
dc.identifier.citationBleak , C P 2020 , On normalish subgroups of the R. Thompson groups . in N Jonoska & D Savchuk (eds) , Developments in Language Theory : 24th International Conference, DLT 2020, Tampa, FL, USA, May 11–15, 2020, Proceedings . Lecture Notes in Computer Science , vol. 12086 , Springer , pp. 29-42 , 24th International Conference on Developments in Language Theory (DLT) , Tampa , United States , 11/05/20 . https://doi.org/10.1007/978-3-030-48516-0_3en
dc.identifier.citationconferenceen
dc.identifier.isbn9783030485153
dc.identifier.isbn9783030485160
dc.identifier.issn0302-9743
dc.identifier.otherPURE: 268029453
dc.identifier.otherPURE UUID: 19aef1e5-1239-4a18-b54b-e20940016d6f
dc.identifier.otherScopus: 85086183051
dc.identifier.otherORCID: /0000-0001-5790-1940/work/75248614
dc.identifier.otherScopus: 85086183051
dc.identifier.urihttp://hdl.handle.net/10023/20020
dc.descriptionFunding: UK EPSRC grant EP/R032866/1en
dc.description.abstractResults in C∗ algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups F ≤ T ≤ V. These results together show that F is non-amenable if and only if T has a simple reduced C∗-algebra. In further investigations into the structure of C∗-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group G. They show that if a group G admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced C∗-algebra. Our chief result concerns the R. Thompson groups F < T < V; we show that there is an elementary amenable group E < F (where here, E ≅ ...)≀Z)≀Z)≀Z) with E normalish in V. The proof given uses a natural partial action of the group V on a regular language determined by a synchronizing automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of V with various forms of formal language theory.
dc.format.extent14
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofDevelopments in Language Theoryen
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.rights© Springer Nature Switzerland AG 2020. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1007/978-3-030-48516-0_3en
dc.subjectThompson's groupen
dc.subjectAmenableen
dc.subjectC*-simplicityen
dc.subjectRegular languageen
dc.subjectSynchronizing automataen
dc.subjectGroup actionsen
dc.subjectNormalish sub-groupsen
dc.subjectWreath producten
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectTheoretical Computer Scienceen
dc.subjectComputer Science(all)en
dc.subjectT-NDASen
dc.subject.lccQA75en
dc.titleOn normalish subgroups of the R. Thompson groupsen
dc.typeConference itemen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.Pure Mathematicsen
dc.contributor.institutionUniversity of St Andrews.Centre for Interdisciplinary Research in Computational Algebraen
dc.identifier.doihttps://doi.org/10.1007/978-3-030-48516-0_3
dc.identifier.urlhttps://doi.org/10.1007/978-3-030-48516-0en


This item appears in the following Collection(s)

Show simple item record