St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Green bees : reverse genetic analysis of deformed wing virus transmission, replication, and tropism

Thumbnail
View/Open
Gusachenko_2020_Viruses_Greenbees_CC.pdf (3.979Mb)
Date
12/05/2020
Author
Gusachenko, Olesya N.
Woodford, Luke
Balbirnie-Cumming, Katharin
Campbell, Ewan M.
Christie, Craig R.
Bowman, Alan S.
Evans, David J.
Keywords
Insect viruses
Honey bee
Pollination
Virus vector
Varroa
RNA viruses
DWV
Reverse genetics
QR355 Virology
QH301 Biology
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Environmental and agricultural pollination services by honey bees, Apis mellifera, and honey production are compromised by high levels of annual colony losses globally. The majority are associated with disease caused by deformed wing virus (DWV), a positive-strand RNA virus, exacerbated by the ectoparasitic mite Varroa destructor. To improve honey bee health, a better understanding of virus transmission and pathogenesis is needed which requires the development of tools to study virus replication, transmission, and localisation. We report the use of reverse genetic (RG) systems for the predominant genetically distinct variants of DWV to address these questions. All RG-recovered viruses replicate within 24 h post-inoculation of pupae and could recapitulate the characteristic symptoms of DWV disease upon eclosion. Larvae were significantly less susceptible but could be infected orally and subsequently developed disease. Using genetically tagged RG DWV and an in vitro Varroa feeding system, we demonstrate virus replication in the mite by accumulation of tagged negative-strand viral replication intermediates. We additionally apply a modified DWV genome expressing a fluorescent reporter protein for direct in vivo observation of virus distribution in injected pupae or fed larvae. Using this, we demonstrate extensive sites of virus replication in a range of pupal tissues and organs and in the nascent wing buds in larvae fed high levels of virus, indicative of a direct association between virus replication and pathogenesis. These studies provide insights into virus replication kinetics, tropism, transmission, and pathogenesis, and produce new tools to help develop the understanding needed to control DWV-mediated colony losses.
Citation
Gusachenko , O N , Woodford , L , Balbirnie-Cumming , K , Campbell , E M , Christie , C R , Bowman , A S & Evans , D J 2020 , ' Green bees : reverse genetic analysis of deformed wing virus transmission, replication, and tropism ' , Viruses , vol. 12 , no. 5 , 532 . https://doi.org/10.3390/v12050532
Publication
Viruses
Status
Peer reviewed
DOI
https://doi.org/10.3390/v12050532
ISSN
1999-4915
Type
Journal article
Rights
Copyright © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Description
This work was supported by grant funding from Biotechnology and Biological Sciences Research Council (BBSRC): BBSRC BB/M00337X/2 and BB/I000828/1. C.R.C. was supported by a KTN BBSRC CASE studentship BB/M503526/1 (http://www.bbsrc.ac.uk). C.R.C was part-funded by the Scottish Beekeeping Association (https://www.scottishbeekeepers.org.uk/) and the Animal Health and Welfare program by the Scottish Government. E.M.C. was supported by the Veterinary Medicines Directorate, Department for Environment Food & Rural Affairs (Project # VM0517) (https://www.gov.uk/government/organisations/veterinary-medicines-directorate).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19943

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter