St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low threshold polariton lasing from a solution-processed organic semiconductor in a planar microcavity

Thumbnail
View/Open
Rajendran_2019_Low_threshold_AOM_AAM.pdf (3.477Mb)
Date
18/06/2019
Author
Rajendran, Sai Kiran
Wei, Mengjie
Ohadi, Hamid
Ruseckas, Arvydas
Turnbull, Graham A.
Samuel, Ifor D. W.
Keywords
Low threshold
Microcavities
Organic semiconductors
Polariton lasing
Strong coupling
QC Physics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Organic semiconductor materials have been widely studied for light emission and lasing due to their ability to tune the emission wavelength through chemical structural modification and their relative ease of fabrication. Strong light-matter coupling is a promising route towards a coherent light source because it has the potential for thresholdless polariton lasing. However, the materials studied so far have relatively high thresholds for polariton lasing. Here we report the suitability of pentafluorene for strong coupling and low threshold polariton lasing. We use a protective buffer layer to reduce degradation during fabrication and lower the lasing threshold using negative detuning to maximize radiative decay. We obtain a low threshold of 17 µJ cm-2, corresponding to an absorbed energy density of 11.7 µJ cm-2. This study shows that pentafluorene is an attractive material for polariton lasing and will assist in the development of low threshold electrically pumped lasing from polariton devices.
Citation
Rajendran , S K , Wei , M , Ohadi , H , Ruseckas , A , Turnbull , G A & Samuel , I D W 2019 , ' Low threshold polariton lasing from a solution-processed organic semiconductor in a planar microcavity ' , Advanced Optical Materials , vol. 7 , no. 12 , 1801791 , pp. 1-7 . https://doi.org/10.1002/adom.201801791
Publication
Advanced Optical Materials
Status
Peer reviewed
DOI
https://doi.org/10.1002/adom.201801791
ISSN
2195-1071
Type
Journal article
Rights
© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/adom.201801791
Description
Funding: UK EPSRC hybrid polaritonics program grant (EP/M025330/1)
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19802

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter