The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 3 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
The full text of this document is not available.pdfPlace holder document2.61 kBAdobe PDFView/Open
Title: Design and synthesis of chemical probes for the plekstrin homology domain
Authors: Elliott, Thomas S.
Supervisors: Conway, Stuart
Keywords: Inositol
Inositol phosphates
Protein kinase B
Issue Date: 30-Nov-2010
Abstract: The phosphatidylinositol polyphosphates play a fundamental role in intracellular signalling. Of particular importance is phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P₃], which acts by recruiting effector proteins to the cell membrane. PtdIns(3,4,5)P₃ interacts with its protein targets through selective binding domains that include the pleckstrin homology (PH) domain. The PH-domain-containing kinase, protein kinase B (PKB/Akt), which interacts with PtdIns(3,4,5)P₃, is upregulated in ~15 human malignancies. Significantly, inhibition of the PtdIns(3,4,5)P₃-PKB interaction has proved viable as a point of therapeutic intervention.There is currently a lack of small molecule probes that selectively interact with a given PH domain. Consequently, it is impossible to dissect the cellular function of PH-domain-containing proteins at a molecular level. To address this problem, we have designed and synthesised a number of derivatives of the PtdIns(3,4,5)P₃ inositol head-group – Ins(1,3,4,5)P₄. Replacement of the 5-position phosphate with a range of phosphate bioisosteres afforded compounds that displayed no binding affinity for the PH-domain of general receptor for phosphoinositides 1 (GRP1). However, it was shown that the 5-position sulfamate analogue displayed selectivity for the PH-domain of PKB. The methylphosphate biosiostere at the 1-position displayed binding for both the GRP1 PH-domain as well as the PKB PH-domain. These results demonstrate that subtle modification of the Ins(1,3,4,5)P₄ structure allows the synthesis of compounds that interact selectively with a given PH domain. We will now use these results for the synthesis of a second generation of compounds with improved PH-domain affinity and selectivity.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses

This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)