Show simple item record

Files in this item


Item metadata

dc.contributor.authorKouvatas, Cassandre
dc.contributor.authorKanwal, Nasima
dc.contributor.authorTrebosc, Julien
dc.contributor.authorRoiland, Claire
dc.contributor.authorDelevoye, Laurent
dc.contributor.authorAshbrook, Sharon E.
dc.contributor.authorLe Fur, Eric
dc.contributor.authorLe Pollès, Laurent
dc.identifier.citationKouvatas , C , Kanwal , N , Trebosc , J , Roiland , C , Delevoye , L , Ashbrook , S E , Le Fur , E & Le Pollès , L 2019 , ' Rationalization of solid-state NMR multi-pulse decoupling strategies : coupling of spin I = ½ and half-integer quadrupolar nuclei ' , Journal of Magnetic Resonance , vol. In press .
dc.identifier.otherPURE: 258483806
dc.identifier.otherPURE UUID: 602ac24d-1288-42d3-a086-cd8f0e74a7c3
dc.identifier.otherORCID: /0000-0002-4538-6782/work/56638960
dc.identifier.otherScopus: 85064325944
dc.identifier.otherWOS: 000468146800006
dc.descriptionThis work benefited from a grant from Agence Nationale de la Recherche (ANR MOSAIC 13-BS08-0018-01).en
dc.description.abstractIn this paper we undertake a study of the decoupling efficiency of the Multiple-Pulse (MP) scheme, and a rationalization of its parameterization and of the choice of instrumental set up. This decoupling scheme is known to remove the broadening of spin-1/2 spectra I, produced by the heteronuclear scalar interaction with a half-integer quadrupolar nucleus S, without reintroducing heteronuclear dipolar interaction. The resulting resolution enhancement depends on the set-up of the length of the series of pulses and delays of the MP, and some intrinsic material and instrumental parameters. Firstly through a numerical approach, this study investigates the influence of the main intrinsic material parameters (heteronuclear dipolar and J coupling, quadrupolar interaction, spin nature) and instrumental parameters (spinning rate, pulse field strength) on efficiency and resolution enhancement of the scalar decoupling scheme. A guideline is then proposed to obtain quickly and easily the best resolution enhancement via the rationalization of the instrumental and parameter set up. It is then illustrated and tested through experimental data, probing the efficiency of MP-decoupling set up using this guideline. Various spin systems were tested (31P-51V in VOPO4, 31P-93Nb in NbOPO4, 119Sn-17O in Y2Sn2O7), combined with simulations results.
dc.relation.ispartofJournal of Magnetic Resonanceen
dc.rightsCopyright © 2019 Published by Elsevier Inc. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at
dc.subjectSolid state NMRen
dc.subjectMulti-phase decouplingen
dc.subjectHeteronuclear scalar interactionsen
dc.subjectHalf integer quadrupolar nucleusen
dc.subjectResolution improvementen
dc.subjectCharacterization of inorganic materialsen
dc.subjectQD Chemistryen
dc.titleRationalization of solid-state NMR multi-pulse decoupling strategies : coupling of spin I = ½ and half-integer quadrupolar nucleien
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record