Band hybridization at the semimetal-semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking
Abstract
We present a combined study from angle-resolved photoemission and density-functional-theory calculations of the temperature-dependent electronic structure in the excitonic insulator candidate Ta2NiSe5. Our experimental measurements unambiguously establish the normal state as a semimetal with a significant band overlap of >100 meV. Our temperature-dependent measurements indicate how these low-energy states hybridize when cooling through the well-known 327 K phase transition in this system. From our calculations and polarization-dependent photoemission measurements, we demonstrate the importance of a loss of mirror symmetry in enabling the band hybridization, driven by a shearlike structural distortion which reduces the crystal symmetry from orthorhombic to monoclinic. Our results thus point to the key role of the lattice distortion in enabling the phase transition of Ta2NiSe5.
Citation
Watson , M D , Markovic , I , Abarca Morales , E , Le Fevre , P , Merz , M , Haghighirad , A A & King , P D C 2020 , ' Band hybridization at the semimetal-semiconductor transition of Ta 2 NiSe 5 enabled by mirror-symmetry breaking ' , Physical Review Research , vol. 2 , no. 1 , 013236 . https://doi.org/10.1103/PhysRevResearch.2.013236
Publication
Physical Review Research
Status
Peer reviewed
ISSN
2643-1564Type
Journal article
Rights
Copyright © 2020 The Author(s). Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Description
Funding: The Leverhulme Trust and The Royal Society.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.