Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy)
Abstract
The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐temperature conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent endmember data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies.
Citation
Kunz , B E & White , R W 2019 , ' Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy) ' , Journal of Metamorphic Geology , vol. Early View . https://doi.org/10.1111/jmg.12478
Publication
Journal of Metamorphic Geology
Status
Peer reviewed
ISSN
0263-4929Type
Journal article
Rights
Copyright © 2019 John Wiley & Sons Ltd. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1111/jmg.12478
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.