St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mission to planet Earth : the first two billion years

Thumbnail
View/Open
St_eken_2020_SSR_Mission_CC.pdf (1.571Mb)
Date
16/03/2020
Author
Stueeken, Eva E.
Som, S. M.
Claire, Mark
Rugheimer, Sarah
Scherf, M.
Sproß, L.
Tosi, N.
Ueno, Y.
Lammer, H.
Keywords
Early Earth
Biosignatures
Atmospheric evolution
GE Environmental Sciences
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Solar radiation and geological processes over the first few million years of Earth’s history, followed soon thereafter by the origin of life, steered our planet towards an evolutionary trajectory of long-lived habitability that ultimately enabled the emergence of complex life. We review the most important conditions and feedbacks over the first 2 billion years of this trajectory, which perhaps represent the best analogue for other habitable worlds in the galaxy. Crucial aspects included: (1) the redox state and volatile content of Earth’s building blocks, which determined the longevity of the magma ocean and its ability to degas H2O and other greenhouse gases, in particular CO2, allowing the condensation of a water ocean; (2) the chemical properties of the resulting degassed mantle, including oxygen fugacity, which would have not only affected its physical properties and thus its ability to recycle volatiles and nutrients via plate tectonics, but also contributed to the timescale of atmospheric oxygenation; (3) the emergence of life, in particular the origin of autotrophy, biological N2 fixation, and oxygenic photosynthesis, which accelerated sluggish abiotic processes of transferring some volatiles back into the lithosphere; (4) strong stellar UV radiation on the early Earth, which may have eroded significant amounts of atmospheric volatiles, depending on atmospheric CO2/N2 ratios and thus impacted the redox state of the mantle as well as the timing of life’s origin; and (5) evidence of strong photochemical effects on Earth’s sulfur cycle, preserved in the form of mass-independent sulfur isotope fractionation, and potentially linked to fractionation in organic carbon isotopes. The early Earth presents itself as an exoplanet analogue that can be explored through the existing rock record, allowing us to identify atmospheric signatures diagnostic of biological metabolisms that may be detectable on other inhabited planets with next-generation telescopes. We conclude that investigating the development of habitable conditions on terrestrial planets, an inherently complex problem, requires multi-disciplinary collaboration and creative solutions.
Citation
Stueeken , E E , Som , S M , Claire , M , Rugheimer , S , Scherf , M , Sproß , L , Tosi , N , Ueno , Y & Lammer , H 2020 , ' Mission to planet Earth : the first two billion years ' , Space Science Reviews , vol. 216 , 31 . https://doi.org/10.1007/s11214-020-00652-3
Publication
Space Science Reviews
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11214-020-00652-3
ISSN
0038-6308
Type
Journal item
Rights
© The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19664

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter