St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extremely imbalanced two-dimensional electron-hole-photon systems

Thumbnail
View/Open
Tiene_2020_PRR_Imbalanced_CC.pdf (1.876Mb)
Date
28/04/2020
Author
Tiene, A.
Levinsen, J.
Parish, M. M.
MacDonald, A. H.
Keeling, J.
Marchetti, F. M.
Funder
The Royal Society
EPSRC
Grant ID
IES/R2/170213
EP/M025330/1
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
Metadata
Show full item record
Abstract
We investigate the phases of two-dimensional electron-hole systems strongly coupled to a microcavity photon field in the limit of extreme charge imbalance. Using variational wave functions, we examine the competition between different electron-hole paired states for the specific cases of semiconducting III-V single quantum wells, electron-hole bilayers, and transition metal dichalcogenide monolayers embedded in a planar microcavity. We show how the Fermi sea of excess charges modifies both the electron-hole bound state (exciton) properties and the dielectric constant of the cavity active medium, which in turn affects the photon component of the many-body polariton ground state. On the one hand, long-range Coulomb interactions and Pauli blocking of the Fermi sea promote electron-hole pairing with finite center-of-mass momentum, corresponding to an excitonic roton minimum. On the other hand, the strong coupling to the ultra-low-mass cavity photon mode favors zero-momentum pairs. We discuss the prospect of observing different types of electron-hole pairing in the photon spectrum.
Citation
Tiene , A , Levinsen , J , Parish , M M , MacDonald , A H , Keeling , J & Marchetti , F M 2020 , ' Extremely imbalanced two-dimensional electron-hole-photon systems ' , Physical Review Research , vol. 2 , no. 2 , 023089 . https://doi.org/10.1103/PhysRevResearch.2.023089
Publication
Physical Review Research
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevResearch.2.023089
ISSN
2643-1564
Type
Journal article
Rights
Copyright © 2020 The Author(s). Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Description
Funding: AHM and JK acknowledge financial support from a Royal Society International Exchange Award, IES\R2\170213. JK acknowledges financial support from EPSRC program “Hybrid Polaritonics” (EP/M025330/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19661

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter