Show simple item record

Files in this item


Item metadata

dc.contributor.authorMishra, K. K.
dc.contributor.authorInstan, Alvaro A.
dc.contributor.authorKumari, Shalini
dc.contributor.authorScott, J. F.
dc.contributor.authorKatiyar, Ram S.
dc.identifier.citationMishra , K K , Instan , A A , Kumari , S , Scott , J F & Katiyar , R S 2020 , ' Lead palladium titanate : a room temperature nanoscale multiferroic thin film ' , Scientific Reports , vol. 10 , 2991 .
dc.identifier.otherPURE: 266678889
dc.identifier.otherPURE UUID: feb46936-7f14-4217-a0b8-74e0baf40386
dc.identifier.otherRIS: urn:1861A8F9A8C7F0734B0BC120AE502DD7
dc.identifier.otherRIS: Mishra2020
dc.identifier.otherScopus: 85079791257
dc.identifier.otherWOS: 000560381100012
dc.descriptionThe authors acknowledge the financial support from the Department of Defense, USA (DoD Grant No. FA9550-16-1-0295).en
dc.description.abstractThe discovery of single-phase multiferroic materials and the understanding of coupling mechanisms between their spin and polarization is important from the point of view of next generation logic and memory devices. Herein we report the fabrication, dielectric, ferroelectric, piezo-response force microscopy, and magnetization measurements of Pd-substituted room-temperature magnetoelectric multiferroic PbPd0.3Ti0.7O3 (PbPdT) thin films. Highly oriented PbPdT thin films were deposited on {(LaAlO3)0.3(Sr2AlTaO6)0.7} (LSAT) substrates in oxygen atmosphere using pulsed laser deposition technique. X-ray diffraction studies revealed that the films had tetragonal phase with (001) orientation. Surface morphology studies using atomic force and scanning electron microscopy suggest a smooth and homogeneous distribution of grains on the film surface with roughness ~2 nm. A large dielectric constant of ~1700 and a low-loss tangent value of ~0.3 at 10 kHz were obtained at room temperature. Temperature dependent dielectric measurements carried out on Pt/PbPdT/La0.7Sr0.3MnO3 (LSMO) metal-dielectric-metal capacitors suggest a ferroelectric to paraelectric transition above 670 K. The measured polarization hysteresis loops at room temperature were attributed to its ferroelectric behavior. From a Tauc plot of (αhν)2 versus energy, the direct band gap Eg of PbPdT thin films was calculated as 3 eV. Ferroelectric piezoelectric nature of the films was confirmed from a strong domain switching response revealed from piezo-response force microscopy. A well-saturated magnetization M-H loop with remanent magnetization of 3.5 emu/cm3 was observed at room temperature, and it retains ferromagnetic ordering in the temperature range 5–395 K. Origin of the magnetization could be traced to the mixed oxidation states of Pd2+/Pd4+ dispersed in polar PbTiO3 matrix, as revealed by our x-ray photoelectron spectroscopic results. These results suggest that PbPdT thin films are multiferroic (ferroelectric-ferromagnetic) at room temperature.
dc.relation.ispartofScientific Reportsen
dc.rightsCopyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
dc.subjectQC Physicsen
dc.titleLead palladium titanate : a room temperature nanoscale multiferroic thin filmen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record