St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms : the role of ‘biofilm precursors’

Thumbnail
View/Open
Chen_2018_ESPL_Cyclicvariation_AAM.pdf (1.592Mb)
Date
01/02/2019
Author
Chen, Xindi
Zhang, Changkuan
Paterson, David M.
Townend, Ian H.
Jin, Chuang
Zhou, Zeng
Gong, Zheng
Feng, Qian
Funder
NERC
Grant ID
NE/N016009/1
Keywords
Biostabilisation
Biofilm detachment
Sediment erosion
Biofilm regrowth
Bio-sedimentary system
GE Environmental Sciences
Earth and Planetary Sciences (miscellaneous)
Earth-Surface Processes
Geography, Planning and Development
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Biofilm mediated intertidal sediments exhibit more complex erosional behaviour than abiotic systems. A major feature of intertidal systems is the exposure to repeated cycles of high and low shear created by tidal conditions and also less predictable episodic events, such as storms. There is very little information on how biofilm-forming communities respond to these conditions. In this study, the effects of both single and repeated-cycles of shear on the stability of newly developed bio-sedimentary beds was examined. Cleaned sand, without any potential biostabilization, was used as the control. For the single-cycle scenario, biofilms were incubated on a non-cohesive sandy bed under prolonged low shear periods varying between 5 and 22 days, after which erosional stress was applied. No significant biostabilization was observed for the youngest bio-sedimentary bed (after five days of low shear incubation). After 22 days, microbial communities were characterized by a firmly attached surface biofilm. To cause erosion, greater hydrodynamic stress (0.28 Pa) was required. The erosional behaviour of the underlying sand was also affected in that bedform ripples noted in the control system were no longer observed. Instead, a sudden ‘mass erosion’ took place (0.33 Pa). The one-cycle scenario indicated that significant biostabilization of sand only occurred after a relative long calm period. Under repeated cycles of stress (five days of low stress followed by high stress event and re-incubation, repeated for four cycles = 20 days), frequent cyclic disturbance did not degrade the system stability but enhanced biostabilization. The properties of the sub-surface sediments were also affected where erosion rates were further inhibited. We hypothesize that organic material eroded from the bed acted as a ‘biofilm precursor’ supporting the development of new biofilm growth. A conceptual framework is presented to highlight the dynamics of bio-sedimentary beds and the effects of growth history under repeated-cycles.
Citation
Chen , X , Zhang , C , Paterson , D M , Townend , I H , Jin , C , Zhou , Z , Gong , Z & Feng , Q 2019 , ' The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms : the role of ‘biofilm precursors’ ' , Earth Surface Processes and Landforms , vol. Early View . https://doi.org/10.1002/esp.4573
Publication
Earth Surface Processes and Landforms
Status
Peer reviewed
DOI
https://doi.org/10.1002/esp.4573
ISSN
0197-9337
Type
Journal article
Rights
© 2019, John Wiley & Sons, Ltd. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/esp.4573
Description
This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51620105005, 51879095, 51579072, 41606104). D. M. Paterson received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and the NERC Blue-coast consortium (N E/N016009/1) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. X. D. Chen received funding from the China Scholarship Council.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19394

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter