St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dolphin echolocation behaviour during active long-range target approaches

Thumbnail
View/Open
Ladegaard_2019_JEB_Dolphinecholocation_FinalPubVersion.pdf (1.752Mb)
Date
25/01/2019
Author
Ladegaard, Michael
Mulsow, Jason
Houser, Dorian S.
Jensen, Frants Havmand
Johnson, Mark
Madsen, Peter Teglberg
Finneran, James J.
Keywords
Biosonar
Click packet
Dtag
Interclick interval
Source level
Toothed whale
QH301 Biology
Ecology, Evolution, Behavior and Systematics
Physiology
Aquatic Science
Animal Science and Zoology
Molecular Biology
Insect Science
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Echolocating toothed whales generally adjust click intensity and rate according to target range to ensure that echoes from targets of interest arrive before a subsequent click is produced, presumably facilitating range estimation from the delay between clicks and returning echoes. However, this click-echo-click paradigm for the dolphin biosonar is mostly based on experiments with stationary animals echolocating fixed targets at ranges below ∼120 m. Therefore, we trained two bottlenose dolphins instrumented with a sound recording tag to approach a target from ranges up to 400 m and either touch the target (subject TRO) or detect a target orientation change (subject SAY). We show that free-swimming dolphins dynamically increase interclick interval (ICI) out to target ranges of ∼100 m. TRO consistently kept ICIs above the two-way travel time (TWTT) for target ranges shorter than ∼100 m, whereas SAY switched between clicking at ICIs above and below the TWTT for target ranges down to ∼25 m. Source levels changed on average by 17log10(target range), but with considerable variation for individual slopes (4.1 standard deviations for by-trial random effects), demonstrating that dolphins do not adopt a fixed automatic gain control matched to target range. At target ranges exceeding ∼100 m, both dolphins frequently switched to click packet production in which interpacket intervals exceeded the TWTT, but ICIs were shorter than the TWTT. We conclude that the click-echo-click paradigm is not a fixed echolocation strategy in dolphins, and we demonstrate the first use of click packets for free-swimming dolphins when solving an echolocation task.
Citation
Ladegaard , M , Mulsow , J , Houser , D S , Jensen , F H , Johnson , M , Madsen , P T & Finneran , J J 2019 , ' Dolphin echolocation behaviour during active long-range target approaches ' , Journal of Experimental Biology , vol. 222 , jeb189217 . https://doi.org/10.1242/jeb.189217
Publication
Journal of Experimental Biology
Status
Peer reviewed
DOI
https://doi.org/10.1242/jeb.189217
ISSN
0022-0949
Type
Journal article
Rights
Copyright © 2019. Published by The Company of Biologists Ltd. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1242/jeb.189217
Description
Financial support was provided by the US Office of Naval Research Code 32 (Mine Countermeasures, Acoustics Phenomenology & Modeling Group). M.L. and P.T.M. were funded by frame grants from the National Danish Research Council (Det Frie Forskningsråd) and by a Semper Ardens grant from the Carlsberg Foundation. M.L.’s travel expenses were covered by grants from Augustinus Fonden and DAS-Fonden (Danish Acoustical Society, Dansk Akustisk Selskab). F.H.J. was funded by an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the EU's Seventh Framework Programme (Agreement No. 609033).
Collections
  • University of St Andrews Research
URL
http://jeb.biologists.org/lookup/doi/10.1242/jeb.189217.supplemental
URI
http://hdl.handle.net/10023/19353

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter