St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of UV-organic interaction and Martian conditions on the survivability of organics

Thumbnail
View/Open
Laurent_2019_Icarus_UV_organicinteraction_AAM.pdf (1.461Mb)
Date
24/01/2019
Author
Laurent, B.
Cousins, C. R.
Pereira, M. F. C.
Martins, Z.
Keywords
Irradiation
Mars
Analogue
Attenuation coefficient
Amino acids
GE Environmental Sciences
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Exogenous organic molecules are delivered to the surface of Mars annually, yet their fate is largely unknown. Likewise, the survivability of putative organic biomarkers directly implicates current Mars surface exploration ambitions. Among these, amino acids are valuable target molecules due to their abiogenic and biological origins. We present the fundamental, but not previously considered, factors that affect the fate of amino acids embedded in Mars mineral analogues when exposed to ionising radiation. Using existing experimental datasets, we show that the attenuation coefficient at 200 nm for amino acids is an effective parameter for quantifying organic survivability, especially when mineral shielding is limited or absent. Conversely, the dielectric constant of a material is a potential key parameter regarding mineral shielding, as it accounts for iron content, and the physical properties of the material (pore size, surface area or water content). Finally, we combine Martian climatic parameters (surface temperature and atmospheric opacity) to show that the relative UV environment varies significantly on Mars as a function of latitude, providing a reference point for future Mars simulation studies.
Citation
Laurent , B , Cousins , C R , Pereira , M F C & Martins , Z 2019 , ' Effects of UV-organic interaction and Martian conditions on the survivability of organics ' , Icarus , vol. In press . https://doi.org/10.1016/j.icarus.2019.01.020
Publication
Icarus
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.icarus.2019.01.020
ISSN
0019-1035
Type
Journal article
Rights
Copyright © 2019 Published by Elsevier Inc. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.icarus.2019.01.020
Description
This work was funded by the Leverhulme Trust (RPG-2015-071). Dr. C. Cousins also wishes to acknowledge funding from the Royal Society of Edinburgh. This work was financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-029932 (PTDC/FIS-AST/29932/2017).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19346

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter