Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorCousins, Claire Rachel
dc.contributor.authorMikhail, Sami
dc.contributor.authorFoucher, Frédéric
dc.contributor.authorStelle, Andrew
dc.contributor.authorWestall, Frances
dc.date.accessioned2020-01-23T14:30:01Z
dc.date.available2020-01-23T14:30:01Z
dc.date.issued2020-01-16
dc.identifier265942028
dc.identifierbf07de25-360b-4e04-a737-23991dcb75cc
dc.identifier000508381400001
dc.identifier85126119799
dc.identifier.citationCousins , C R , Mikhail , S , Foucher , F , Stelle , A & Westall , F 2020 , ' Metamorphic evolution of carbonate-hosted microbial biosignatures ' , Geochemical Perspectives Letters , vol. 12 , pp. 40-45 . https://doi.org/10.7185/geochemlet.2002en
dc.identifier.issn2410-339X
dc.identifier.otherORCID: /0000-0002-3954-8079/work/67919720
dc.identifier.otherORCID: /0000-0001-5276-0229/work/67919722
dc.identifier.urihttps://hdl.handle.net/10023/19341
dc.descriptionThis work was funded by a Royal Society of Edinburgh Research Fellowship. FF and FW acknowledge funding from the CNRS and CNES.en
dc.description.abstractMicrobial biosignature assemblages captured within mineral substrates experience extreme pressures (P) and temperatures (T) during rock burial and metamorphism. We subjected natural microbial biofilms hosted within thermal spring carbonate to six high pressure, high temperature (HPHT) conditions spanning 500 and 800 MPa and 200 to 550 °C, to investigate the initial petrographic transformation of organic and inorganic phases. We find biogenic and amorphous silica mineralises increasingly mature organic matter (OM) as temperature and pressure increase, with OM expelled from recrystallised calcite at the highest HPHT, captured within a quartz phase. Sulfur globules associated with microbial filaments persist across all HPHT conditions in association with microbially-derived kerogen. These data demonstrate how microbial material captured within chemically-precipitated sediments petrographically evolves in high grade rocks during their first stages of transformation.
dc.format.extent5
dc.format.extent9639103
dc.language.isoeng
dc.relation.ispartofGeochemical Perspectives Lettersen
dc.subjectMetamorphismen
dc.subjectBiosignatureen
dc.subjectCarbonateen
dc.subjectMicrofossilen
dc.subjectRaman spectroscopyen
dc.subjectKerogenen
dc.subjectGE Environmental Sciencesen
dc.subjectNDASen
dc.subject.lccGEen
dc.titleMetamorphic evolution of carbonate-hosted microbial biosignaturesen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Society of Edinburghen
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews. St Andrews Centre for Exoplanet Scienceen
dc.contributor.institutionUniversity of St Andrews. St Andrews Isotope Geochemistryen
dc.identifier.doi10.7185/geochemlet.2002
dc.description.statusPeer revieweden
dc.identifier.grantnumberen


This item appears in the following Collection(s)

Show simple item record