St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-content screening image dataset and quantitative image analysis of Salmonella infected human cells

Thumbnail
View/Open
Antoniou_2019_BMCRN_High_contentscreening_CC.pdf (708.4Kb)
Date
16/12/2019
Author
Antoniou, Antony N.
Powis, Simon J.
Kriston-Vizi, Janos
Keywords
Salmonella
Unfolded protein response
Endoplasmic reticulum
High-content screening
Image-based screening
Phenotypic screening
Confocal image
Cellular morphology
HeLa
QR180 Immunology
DAS
Metadata
Show full item record
Abstract
Objectives Salmonella bacteria can induce the unfolded protein response, a cellular stress response to misfolding proteins within the endoplasmic reticulum. Salmonella can exploit the host unfolded protein response leading to enhanced bacterial replication which was in part mediated by the induction and/or enhanced endo-reticular membrane synthesis. We therefore wanted to establish a quantitative confocal imaging assay to measure endo-reticular membrane expansion following Salmonella infections of host cells. Data description High-content screening confocal fluorescence microscopic image set of Salmonella infected HeLa cells is presented. The images were collected with a PerkinElmer Opera LX high-content screening system in seven 96-well plates, 50 field-of-views and DAPI, endoplasmic reticulum tracker channels and Salmonella mCherry protein in each well. Totally 93,300 confocal fluorescence microscopic images were published in this dataset. An ImageJ high-content image analysis workflow was used to extract features. Cells were classified as infected and non-infected, the mean intensity of endoplasmic reticulum tracker under Salmonella bacteria was calculated. Statistical analysis was performed by an R script, quantifying infected and non-infected cells for wild-type and ΔsifA mutant cells. The dataset can be further used by researchers working with big data of endoplasmic reticulum fluorescence microscopic images, Salmonella bacterial infection images and human cancer cells.
Citation
Antoniou , A N , Powis , S J & Kriston-Vizi , J 2019 , ' High-content screening image dataset and quantitative image analysis of Salmonella infected human cells ' , BMC Research Notes , vol. 12 , 808 . https://doi.org/10.1186/s13104-019-4844-5
Publication
BMC Research Notes
Status
Peer reviewed
DOI
https://doi.org/10.1186/s13104-019-4844-5
ISSN
1756-0500
Type
Journal article
Rights
Copyright © The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Description
This work was supported by the Medical Research Council Core funding the MRC LMCB (MC_U12266B) (JKV) and the EU FP7 Marie-Curie International Reintegration Grant PIRG08-GA-2010-276811 (JKV). ANA was funded by ARUK Fellowships Non-Clinical Career Development Fellowship Ref No: 18440. ANA and SJP were also in part funded by ARUK (Grant 21261).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19181

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter