St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Defect chemistry in perovskite titanate : from materials to interfaces

Date
26/06/2019
Author
Hui, Jianing
Supervisor
Irvine, John T. S.
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Royal Society (Great Britain)
China Scholarship Council (CSC)
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The increasing demand for energy consumption and environmental protection accelerates renewable energy applications. Due to the intermittence supply of renewables such as wind and wave, the development of energy conversion and storage techniques is in urgent need. H₂, with high energy density, huge reserves and zero emissions, becomes one of the most promising energy carriers in the future. High temperature steam electrolysis and photoelectrolysis are two promising methods for H₂ production that can use renewable energies like wind and solar. However, the catalysts degradation is still the main drawback for their wide application. This thesis explores a promising candidate perovskite titanate that can be used as catalyst substrates. The influences of A-site cation deficiency on materials microstructure, electronic structure and redox stability are the main issues studied in this project. This work illustrates the metal-oxide interactions enhancements when cation deficiency exists in perovskite titanate oxides. Promoted cation migration results in metal-oxide interface reconstruction, which in turn increases contact area and adhesion force between catalyst and substrate. Electron microscopy and thermogravimetry analysis showed enhanced particle stability on A-site deficient perovskite at 700 °C in redox atmosphere. The influence of cation deficiency on perovskites electronic structure was also discussed based on La and Cr co-doped SrTiO₃. Although A-site deficiency doesn’t contribute to band structure, it introduces electrons and increases carrier mobility. Thus, a dramatical enhancement in H₂ production rate was achieved in materials containing a small amount of cation deficiency. The highest H₂ production rate is 7.5 μM·h⁻¹ under visible light (>420 nm, 250 W). The reduction of perovskite in strong reducing atmosphere not only creates oxygen vacancies, but also pushes B-site cations out the lattice when A-site cation deficiency exists. Here, a series of materials doped with Fe, Co, Ni and Cu were prepared and analysed to compare the different exsolution ability. Cation size, oxygen vacancies and doping level all affect the exsolution process of transition metals. N-type conductivity due to Ti reduction suggests the possibility usage for anode material in SOFC. The initial trial with such material achieved 0.7 W·cm⁻² for single fuel cell with wet H₂ (3%H₂O) at 900 °C. Also, it can produce H₂ efficiently when working in SOEC mode. The fundamental properties of A-site deficient perovskite titanate explored in this thesis gives insight for further material design related to various functionality.
DOI
https://doi.org/10.17630/10023-19101
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2022-05-30
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 30th May 2022
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/19101

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter