St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testing the stability of supersonic ionized Bondi accretion flows with radiation hydrodynamics

Thumbnail
View/Open
Vandenbroucke_2019_MNRAS_supersonic_AAM.pdf (1.623Mb)
Date
21/05/2019
Author
Vandenbroucke, Bert
Sartorio, Nina S
Wood, Kenneth
Lund, Kristin
Falceta-gonçalves, Diego
Haworth, Thomas J
Bonnell, Ian
Keto, Eric
Tootill, Daniel
Keywords
Hydrodynamics
Instabilities
Methods: numerical
HII regions
QB Astronomy
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We investigate the general stability of 1D spherically symmetric ionized Bondi accretion on to a massive object in the specific context of accretion on to a young stellar object. We first derive a new analytic expression for a steady-state two-temperature solution that predicts the existence of compact and hypercompact H ii regions. We then show that this solution is only marginally stable if ionization is treated self-consistently. This leads to a recurring collapse of the H ii region over time. We derive a semi-analytic model to explain this instability, and test it using spatially converged 1D radiation hydrodynamical simulations. We discuss the implications of the 1D instability on 3D radiation hydrodynamics simulations of supersonic accreting flows.
Citation
Vandenbroucke , B , Sartorio , N S , Wood , K , Lund , K , Falceta-gonçalves , D , Haworth , T J , Bonnell , I , Keto , E & Tootill , D 2019 , ' Testing the stability of supersonic ionized Bondi accretion flows with radiation hydrodynamics ' , Monthly Notices of the Royal Astronomical Society , vol. 485 , no. 3 , pp. 3771-3782 . https://doi.org/10.1093/mnras/stz357
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stz357
ISSN
0035-8711
Type
Journal article
Rights
Copyright © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1093/mnras/stz357
Description
BV and KW acknowledge support from STFC grant ST/M001296/1. NSS would like to thank CAPES for graduate research funding. KL acknowledges support from the Carnegie Trust. DFG thanks the Brazilian agencies FAPESP (no. 2013/10559-3) and CNPq (no. 311128/2017-3) for financial support. TJH is funded by an Imperial College London Junior Research Fellowship.
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/1903.00479
URI
http://hdl.handle.net/10023/19100

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter