Show simple item record

Files in this item


Item metadata

dc.contributor.authorMarro, Nicolas
dc.contributor.authordella Sala, Flavio
dc.contributor.authorKay, Euan Robert
dc.identifier.citationMarro , N , della Sala , F & Kay , E R 2020 , ' Programmable dynamic covalent nanoparticle building blocks with complementary reactivity ' , Chemical Science , vol. 11 , no. 2 , pp. 372-383 .
dc.identifier.otherPURE: 262531785
dc.identifier.otherPURE UUID: 4f94d56b-4a94-4b1e-8794-916ae94e0c34
dc.identifier.otherORCID: /0000-0001-8177-6393/work/64697867
dc.identifier.otherScopus: 85077754209
dc.identifier.otherWOS: 000505529100005
dc.descriptionThis work was supported by the EPSRC (EP/K016342/1, EP/P505097/1, EP/M506631/1) and the Leverhulme Trust (RPG-2015-042). ERK thanks the Royal Society of Edinburgh and Scottish Government for a Personal Research Fellowshen
dc.description.abstractNanoparticle-based devices, materials and technologies will demand a new era of synthetic chemistry where predictive principles familiar in the molecular regime are extended to nanoscale building blocks. Typical covalent strategies for modifying nanoparticle-bound species rely on kinetically controlled reactions optimised for efficiency but with limited capacity for selective and divergent access to a range of product constitutions. In this work, monolayer-stabilized nanoparticles displaying complementary dynamic covalent hydrazone exchange reactivity undergo distinct chemospecific transformations by selecting appropriate combinations of ‘nucleophilic’ or ‘electrophilic’ nanoparticle-bound monolayers with nucleophilic or electrophilic molecular modifiers. Thermodynamically governed reactions allow modulation of product compositions, spanning mixed-ligand monolayers to exhaustive exchange. High-density nanoparticle-stabilizing monolayers facilitate in situ reaction monitoring by quantitative 19F NMR spectroscopy. Kinetic analysis reveals that hydrazone exchange rates are moderately diminished by surface confinement, and that the magnitude of this effect is dependent on mechanistic details: surface-bound electrophiles react intrinsically faster, but are more significantly affected by surface immobilization than nucleophiles. Complementary nanoparticles react with each other to form robust covalently connected binary aggregates. Endowed with the adaptive characteristics of the dynamic covalent linking process, the nanoscale assemblies can be tuned from extended aggregates to colloidally stable clusters of equilibrium sizes that depend on the concentration of a monofunctional capping agent. Just two ‘dynamic covalent nanoparticles’ with complementary thermodynamically governed reactivities therefore institute a programmable toolkit offering flexible control over nanoparticle surface functionalization, and construction of adaptive assemblies that selectively combine several nanoscale building blocks.
dc.relation.ispartofChemical Scienceen
dc.rightsCopyright © 2019 The Author(s). Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.en
dc.subjectQD Chemistryen
dc.titleProgrammable dynamic covalent nanoparticle building blocks with complementary reactivityen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Chemistryen
dc.contributor.institutionUniversity of St Andrews.EaSTCHEMen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record