St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Complementary hydrazone-based dynamic covalent nanoparticles

Date
26/06/2019
Author
Marro, Nicolas
Supervisor
Kay, Euan Robert
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The extraordinary and unique properties exhibited by monolayer-stabilised metal nanoparticles suggest exciting potential applications. Surface-bound molecules stabilize the material in colloidal form, but also define a whole host of physicochemical properties and provide a means to link nanoparticles with any number of other components. Post-synthetic strategies for functionalizing nanoparticle-bound monolayers are therefore critical for virtually all applications. However, established methods each have limitations. The emerging concept of dynamic covalent nanoparticle building blocks provides a transformative strategy for achieving responsive and adaptive surface-engineering of nanomaterials. Previously, dynamic covalent hydrazone exchange has been employed to reversibly alter gold nanoparticle-bound monolayers using electrophilic molecular modifiers (aldehydes), establishing the possibility of using dynamic covalent reactions to manipulate nanoparticle-bond functionality. This thesis takes several steps towards developing this approach into a general strategy for divergent modification of nanoparticle surface functionality. Exploiting the directional nature of the hydrazone bond, a complementary family of dynamic covalent nanoparticles having the electrophilic species tethered to the nanoparticle surface, was created. The scope of the dynamic covalent nanoparticle strategy is thus significantly expanded, allowing reversible post-synthetic functionalization using nucleophilic exchange units. Using solution-state NMR spectroscopy, hydrazone exchange kinetics for these two sets of complementary nanoparticles were investigated, revealing how the surface-confined reactivity compares to bulk solution and also significant differences in reactivity between the complementary pair of nanoparticles. The reversible nature of dynamic covalent reactions allows each member of the complementary family of nanoparticle building block to be assembled in a predictable and controlled way, governed by simple abiotic molecular systems. Furthermore, the complementary reactivity of these two systems provides access to binary nanoparticle assemblies without requiring any molecular linkers. Finally, a detailed understanding about surface-confined chemical reactivities offers the opportunity to explore self-sorting behaviour of complementary nanoparticles. Dynamic covalent exchange can be used to not only switch nanoparticle solvent compatibility between widely differing solvents (from hexane to water), but also to progressively tune solubility across the entire continuum between these extremes. Indeed, molecular-level control over surface-confined reactions, allows to produce a self-consistent family of kinetically stable nanoparticles with different mixed-ligands monolayer compositions, providing a unique platform to study structure–property relationships on the nanoscale.
DOI
https://doi.org/10.17630/10023-18857
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2022-03-20
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 20th March 2022
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/18857

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter