St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance evolution of niobium doped lanthanum strontium ferrate perovskite anode for solid oxide fuel cells

Thumbnail
View/Open
Li_2019_Performance_evolution_of_niobium_SOFC_XVI_AAM.pdf (865.9Kb)
Date
08/09/2019
Author
Li, J.
Lü, Z.
Irvine, J. T.S.
Keywords
QD Chemistry
TK Electrical engineering. Electronics Nuclear engineering
Engineering(all)
I-PW
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
In this paper, evolutions of La0.8Sr0.2Fe0.9Nb0.1O3-δ (LSFNb) anodes for solid oxide fuel cells (SOFCs) with different microstructures are investigated, which are prepared by adjusting the weight ratio of electrode powder/organic binder during the preparation of slurries. AC impedance spectra clearly reveals that LSFNb anode made from 7:4-slurry shows better microstructure and lower polarization resistance (RP) compared with those of LSFNb anode made from 7:2.5-slurry. Better electrochemical performance is obtained on the single cells using 7:4-anode and cathode slurries with maximum power density (MPD) reaching 331.9 mW·cm-2 after discharged for 200 h fueled by H2, compared with 285.8 mW·cm-2 of the cell made from 7:2.5-slurries. The two cells exhibit excellent stability with undetectable degenerations for over 200 h. These results demonstrate that LSFNb made from thin slurries possesses better electrochemical performance and can active continuously without significant agglomeration, making porous LSFNb a promising perovskite anode candidate for SOFCs.
Citation
Li , J , Lü , Z & Irvine , J T S 2019 , Performance evolution of niobium doped lanthanum strontium ferrate perovskite anode for solid oxide fuel cells . in K Eguchi & S C Singhal (eds) , Solid Oxide Fuel Cells 16, SOFC XVI . ECS Transactions , no. 1 , vol. 91 , Electrochemical Society, Inc. , pp. 1693-1700 , 16th International Symposium on Solid Oxide Fuel Cells, SOFC XVI , Kyoto , Japan , 8/09/19 . https://doi.org/10.1149/09101.1693ecst
 
conference
 
Publication
Solid Oxide Fuel Cells 16, SOFC XVI
DOI
https://doi.org/10.1149/09101.1693ecst
ISSN
1938-6737
Type
Conference item
Rights
© 2019 ECS - The Electrochemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1149/09101.1693ecst
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18804

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter