Association schemes for diagonal groups
Abstract
For any finite group G, and any positive integer n, we construct an association scheme which admits the diagonal group Dn(G) as a group of automorphisms. The rank of the association scheme is the number of partitions of n into at most |G| parts, so is p(n) if |G| ≥ n; its parameters depend only on n and |G|. For n=2, the association scheme is trivial, while for n=3 its relations are the Latin square graph associated with the Cayley table of G and its complement. A transitive permutation group G is said to be AS-free if there is no non-trivial association scheme admitting G as a group of automorphisms. A consequence of our construction is that an AS-free group must be either 2-homogeneous or almost simple. We construct another association scheme, finer than the above scheme if n>3, from the Latin hypercube consisting of n-tuples of elements of G with product the identity.
Citation
Cameron , P J & Eberhard , S 2019 , ' Association schemes for diagonal groups ' , Australasian Journal of Combinatorics , vol. 75 , no. 3 , pp. 357-364 . < https://ajc.maths.uq.edu.au/pdf/75/ajc_v75_p357.pdf >
Publication
Australasian Journal of Combinatorics
Status
Peer reviewed
ISSN
2202-3518Type
Journal article
Rights
Copyright © The author(s). Released under the CC BY 4.0 International License.
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.