St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Association schemes for diagonal groups

Thumbnail
View/Open
Cameron_2019_Association_schemes_AJC_v75_p357.pdf (93.43Kb)
Date
27/10/2019
Author
Cameron, Peter J.
Eberhard, Sean
Keywords
Association scheme
Diagonal group
Latin square
QA Mathematics
Mathematics(all)
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
For any finite group G, and any positive integer n, we construct an association scheme which admits the diagonal group Dn(G) as a group of automorphisms. The rank of the association scheme is the number of partitions of n into at most |G| parts, so is p(n) if |G| ≥ n; its parameters depend only on n and |G|. For n=2, the association scheme is trivial, while for n=3 its relations are the Latin square graph associated with the Cayley table of G and its complement. A transitive permutation group G is said to be AS-free if there is no non-trivial association scheme admitting G as a group of automorphisms. A consequence of our construction is that an AS-free group must be either 2-homogeneous or almost simple. We construct another association scheme, finer than the above scheme if n>3, from the Latin hypercube consisting of n-tuples of elements of G with product the identity.
Citation
Cameron , P J & Eberhard , S 2019 , ' Association schemes for diagonal groups ' , Australasian Journal of Combinatorics , vol. 75 , no. 3 , pp. 357-364 . < https://ajc.maths.uq.edu.au/pdf/75/ajc_v75_p357.pdf >
Publication
Australasian Journal of Combinatorics
Status
Peer reviewed
ISSN
2202-3518
Type
Journal article
Rights
Copyright © The author(s). Released under the CC BY 4.0 International License.
Collections
  • University of St Andrews Research
URL
https://ajc.maths.uq.edu.au/pdf/78/ajc_v78_p450.pdf
https://ajc.maths.uq.edu.au/pdf/75/ajc_v75_p357.pdf
URI
http://hdl.handle.net/10023/18797

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter