Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorWurster, J.
dc.contributor.authorBate, Matthew R.
dc.contributor.authorPrice, Daniel J.
dc.date.accessioned2019-10-25T09:30:05Z
dc.date.available2019-10-25T09:30:05Z
dc.date.issued2018-11
dc.identifier.citationWurster , J , Bate , M R & Price , D J 2018 , ' Hall effect-driven formation of gravitationally unstable discs in magnetized molecular cloud cores ' , Monthly Notices of the Royal Astronomical Society , vol. 480 , no. 4 , pp. 4434-4442 . https://doi.org/10.1093/mnras/sty2212en
dc.identifier.issn0035-8711
dc.identifier.otherPURE: 262150176
dc.identifier.otherPURE UUID: 38408421-e633-4c42-af68-4bad83c46e10
dc.identifier.otherBibtex: WursterBatePrice2018hd
dc.identifier.otherScopus: 85055184462
dc.identifier.otherORCID: /0000-0003-0688-5332/work/63716939
dc.identifier.urihttps://hdl.handle.net/10023/18765
dc.description.abstractWe demonstrate the formation of gravitationally unstable discs in magnetized molecular cloud cores with initial mass-to-flux ratios of five times the critical value, effectively solving the magnetic braking catastrophe. We model the gravitational collapse through to the formation of the stellar core, using Ohmic resistivity, ambipolar diffusion and the Hall effect, and using the canonical cosmic ray ionization rate of ζcr = 10−17 s−1. When the magnetic field and rotation axis are initially aligned, a ≲ 1 au disc forms after the first core phase, whereas when they are anti-aligned, a gravitationally unstable 25 au disc forms during the first core phase. The aligned model launches a 3 km s−1 first core outflow, while the anti-aligned model launches only a weak ≲ 0.3 km s−1 first core outflow. Qualitatively, we find that models with ζcr = 10−17 s−1 are similar to purely hydrodynamical models if the rotation axis and magnetic field are initially anti-aligned, whereas they are qualitatively similar to ideal magnetohydrodynamical models if initially aligned.
dc.format.extent9
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.rights© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1093/mnras/sty2212en
dc.subjectAccretion discen
dc.subjectMagnetic fieldsen
dc.subjectMHDen
dc.subjectMethods: numericalen
dc.subjectStars: formationen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQA75en
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleHall effect-driven formation of gravitationally unstable discs in magnetized molecular cloud coresen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1093/mnras/sty2212
dc.description.statusPeer revieweden
dc.identifier.urlhttps://arxiv.org/abs/1808.04376en


This item appears in the following Collection(s)

Show simple item record