St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular bacterial load assay (MBLA) concurs with culture on the NaOH-induced Mycobacterium tuberculosis loss of viability

Thumbnail
View/Open
Mtafya_2019_JCM_MBLA_AAM.pdf (909.6Kb)
Date
25/06/2019
Author
Mtafya, Bariki
Sabiiti, Wilber
Sabi, Issa
John, Joseph
Sichone, Emanuel
Ntinginya, Nyanda E.
Gillespie, Stephen H.
Keywords
QR Microbiology
RA0421 Public health. Hygiene. Preventive Medicine
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Effective methods to detect viable Mycobacterium tuberculosis (Mtb), the main causative agent of tuberculosis (TB) are urgently needed. To date, cultivation of Mtb is the gold standard which depends on initial sample processing with N-Acetyl-L-Cysteine/Sodium hydroxide (NALC/NaOH), chemicals that compromise Mtb viability and, consequently the performance of downstream tests. We applied culture and the novel Molecular bacterial load assay (MBLA) to measure the loss of Mtb viability following NALC/NaOH treatment of Mtb H37Rv pure culture and clinical sputa from pulmonary TB patients. Compared to untreated controls, NALC/NaOH treatment of Mtb, reduced MBLA detectable bacillary load (estimated colony forming units/milliliter (eCFU/mL) by 0.66±0.21log10- at 23°C (P=0.018) and 0.72±0.08log10- at 30°C (P=0.013). Likewise, NALC/NaOH treatment reduced viable count on solid culture by 0.84±0.02log10- at 23°C (P<0.001) and 0.85±0.01log10- CFU/mL at 30°C (P<0.001) respectively. The reduction in viable count was reflected by a corresponding increase in time to positivity of MGIT liquid culture, 1.2 days at 23°C (P<0.001), and 1.1 days at 30°C (P<0.001). This NaOH-induced Mtb viability loss was replicated in clinical sputum samples, with bacterial load dropping by 0.65±0.17log10 from 5.36±0.24log10- to 4.71±0.16log10- eCFU/mL for untreated and treated sputa respectively. Applying the Bowness et al model, revealed that the treated MGIT time to culture positivity of 142hrs was equivalent to 4.86±0.28log10CFU, consistent with MBLA-measured bacterial load. Our study confirms the contribution of NALC/NaOH treatment to loss of viable bacterial count. Tests that obviate the need of decontamination may offer alternative option for accurate detection of viable Mtb and treatment response monitoring.
Citation
Mtafya , B , Sabiiti , W , Sabi , I , John , J , Sichone , E , Ntinginya , N E & Gillespie , S H 2019 , ' Molecular bacterial load assay (MBLA) concurs with culture on the NaOH-induced Mycobacterium tuberculosis loss of viability ' , Journal of Clinical Microbiology , vol. 57 , e01992-18 . https://doi.org/10.1128/JCM.01992-18
Publication
Journal of Clinical Microbiology
Status
Peer reviewed
DOI
https://doi.org/10.1128/JCM.01992-18
ISSN
0095-1137
Type
Journal article
Rights
© 2018, American Society for Microbiology. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1128/JCM.01992-18
Description
This work was supported by the commonwealth studentship award for Bariki Mtafya at University of St Andrews in UK and European and Developing Countries Clinical Trials Partnership (EDCTP) through TWENDE and PanACEA II grants.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18753

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter