Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorWurster, J.
dc.contributor.authorPrice, Daniel J.
dc.contributor.authorBate, Matthew R.
dc.date.accessioned2019-10-22T10:30:06Z
dc.date.available2019-10-22T10:30:06Z
dc.date.issued2016-03-21
dc.identifier262150363
dc.identifier065d8cd8-591a-4433-887a-b71d77c5bd9f
dc.identifier84961652514
dc.identifier.citationWurster , J , Price , D J & Bate , M R 2016 , ' Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe? ' , Monthly Notices of the Royal Astronomical Society , vol. 457 , no. 1 , pp. 1037-1061 . https://doi.org/10.1093/mnras/stw013en
dc.identifier.issn0035-8711
dc.identifier.otherBibtex: WursterPriceBate2016
dc.identifier.otherORCID: /0000-0003-0688-5332/work/63716941
dc.identifier.urihttps://hdl.handle.net/10023/18738
dc.description.abstractWe investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.
dc.format.extent25
dc.format.extent7553078
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.subjectMagnetic fieldsen
dc.subjectMHDen
dc.subjectMethods: numericalen
dc.subjectStars: formationen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectT-DASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleCan non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?en
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1093/mnras/stw013
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record