Investigating the damping rate of phase-mixed Alfvén waves
View/ Open
Date
12/2019Grant ID
ST/N000609/1
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. This paper investigates the effectiveness of phase mixing as a coronal heating mechanism. A key quantity is the wave damping rate, γ, defined as the ratio of the heating rate to the wave energy. Aims. This paper is primarily concerned with answering the question: Can laminar phase-mixed Alfvén waves have a large enough value of γ to heat the corona? Other questions this paper aims to answer are: How well can the γ of standing Alfvén waves which have reached steady-state be approximated with a relatively simple equation, namely, equation (3.5)? Why does leakage of waves out of a loop reduce γ and by how much? How does increasing the number of excited harmonics affect γ? Methods. We calculate an upper bound for γ and compare this with the γ required to heat the corona. Analytic results are verified numerically. Results. We find that γ is too small at observed frequencies by approximately 3 orders of magnitude to heat the corona. Therefore, we believe that laminar phase mixing is not a viable standalone heating mechanism for coronal loops. To arrive at this conclusion, several assumptions were made. The assumptions are discussed in Section 2.1. A key assumption is that we model the waves as strictly laminar. We show that γ is largest at resonance. Equation (3.5) provides a good estimate for the damping rate (within approximately 10% accuracy) for resonant field lines. However, away from resonance, the equation provides a poor estimate, with it predicting γ to be orders of magnitude too large. We find that leakage acts to reduce γ but plays a negligible role if γ is of the order required to heat the corona. If the wave energy follows a power spectrum with slope -5/3 then γ grows logarithmically with the number of excited harmonics. If the number of excited harmonics is increased by much more than 100, then the heating is mainly caused by gradients parallel to the field rather than perpendicular. Therefore, in this case, the system is not heated mainly by phase mixing.
Citation
Prokopyszyn , A P K & Hood , A W 2019 , ' Investigating the damping rate of phase-mixed Alfvén waves ' , Astronomy & Astrophysics , vol. 632 , A93 . https://doi.org/10.1051/0004-6361/201936658
Publication
Astronomy & Astrophysics
Status
Peer reviewed
ISSN
0004-6361Type
Journal article
Rights
Copyright © 2019 ESO. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1051/0004-6361/201936658
Description
Funding: UK Science and Technology Facilities Council (U.K.) through the consolidated grant ST/N000609/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.