St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coherent backaction between spins and an electronic bath : non-Markovian dynamics and low-temperature quantum thermodynamic electron cooling

Thumbnail
View/Open
Matern_2019_PRB_Backaction_FinalPubVersion.pdf (972.5Kb)
Date
16/10/2019
Author
Matern, Stephanie
Loss, Daniel
Klinovaja, Jelena
Braunecker, Bernd
Funder
EPSRC
Grant ID
EP/L015110/1
Keywords
QC Physics
T-NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We provide a versatile analytical framework for calculating the dynamics of a spin system in contact with a fermionic bath beyond the Markov approximation. The approach is based on a second-order expansion of the Nakajima-Zwanzig master equation but systematically includes all quantum coherent memory effects leading to non-Markovian dynamics. Our results describe, for the free induction decay, the full time range from the non-Markovian dynamics at short times, to the well-known exponential thermal decay at long times. We provide full analytic results for the entire time range using a bath of itinerant electrons as an archetype for universal quantum fluctuations. Furthermore, we propose a quantum thermodynamic scheme to employ the temperature insensitivity of the non-Markovian decay to transport heat out of the electron system and thus, by repeated reinitialization of a cluster of spins, to efficiently cool the electrons at very low temperatures.
Citation
Matern , S , Loss , D , Klinovaja , J & Braunecker , B 2019 , ' Coherent backaction between spins and an electronic bath : non-Markovian dynamics and low-temperature quantum thermodynamic electron cooling ' , Physical Review. B, Condensed matter and materials physics , vol. 100 , no. 13 , 134308 . https://doi.org/10.1103/PhysRevB.100.134308
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.100.134308
ISSN
1098-0121
Type
Journal article
Rights
Copyright © 2019 American Physical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1103/PhysRevB.100.134308
Description
S.M. acknowledges the support by the EPSRC under Grant No. EP/L015110/1. D.L. and J.K. acknowledge the support by the Swiss National Science Foundation and NCCR QSIT.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18701

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter