Show simple item record

Files in this item


Item metadata

dc.contributor.authorHeard, Christopher J.
dc.contributor.authorGrajciar, Lukas
dc.contributor.authorRice, Cameron M.
dc.contributor.authorPugh, Suzi M.
dc.contributor.authorNachtigall, Petr
dc.contributor.authorAshbrook, Sharon E.
dc.contributor.authorMorris, Russell E.
dc.identifier.citationHeard , C J , Grajciar , L , Rice , C M , Pugh , S M , Nachtigall , P , Ashbrook , S E & Morris , R E 2019 , ' Fast room temperature lability of aluminosilicate zeolites ' , Nature Communications , vol. 10 , 4690 .
dc.identifier.otherPURE: 261205020
dc.identifier.otherPURE UUID: 9b23889b-784f-4dbb-99a9-d40905d9934d
dc.identifier.otherORCID: /0000-0001-7809-0315/work/63380879
dc.identifier.otherORCID: /0000-0002-4538-6782/work/63380889
dc.identifier.otherScopus: 85073468436
dc.identifier.otherWOS: 000490417700002
dc.descriptionCharles University Centre of Advanced Materials (CUCAM) (OP VVV Excellent Re-search Teams, project number CZ.02.1.01/0.0/0.0/15_003/0000417) is acknowledged. PN acknowledges the Czech Science Foundation (19-21534S). This work was supported by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experi-mental Development and Innovations project “IT4Innovations National Supercomputing Center – LM2015070”. The UK 850 MHz solid-state NMR Facility used in this research was fund-ed by EPSRC and BBSRC (contract reference PR140003) as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Develop-ment Fund (ERDF). Collaborative assistance from the 850 MHz Facility Manager (Dinu Iuga, University of Warwick) is acknowledged. This work was also supported by the ERC (EU FP7 Consolidator Grant 614290 “EXONMR” and Advanced Grant 787073 “ADOR”) and the EPSRC (EP/N509759/1 and EP/N50936X/1). SEA would like to thank the Royal Society and the Wolfson Foundation for a merit award.en
dc.description.abstractAluminosilicate zeolites are traditionally used in high-temperature applications at low water vapour pressures where the zeolite framework is generally considered to be stable and static. Increasingly, zeolites are being considered for applications under milder aqueous conditions. However, it has not yet been established how neutral liquid water at mild conditions affects the stability of the zeolite framework. Here, we show that covalent bonds in the zeolite chabazite (CHA) are labile when in contact with neutral liquid water, which leads to partial but fully reversible hydrolysis without framework degradation. We present ab initio calculations that predict novel, energetically viable reaction mechanisms by which Al-O and Si-O bonds rapidly and reversibly break at 300 K. By means of solid-state NMR, we confirm this prediction, demonstrating that isotopic substitution of 17O in the zeolitic framework occurs at room temperature in less than one hour of contact with enriched water.
dc.relation.ispartofNature Communicationsen
dc.rightsCopyright © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
dc.subjectQD Chemistryen
dc.titleFast room temperature lability of aluminosilicate zeolitesen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorThe Royal Societyen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.description.statusPeer revieweden
dc.identifier.grantnumber614290 - EXONMRen

This item appears in the following Collection(s)

Show simple item record