St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Introduction to the Dicke model : from equilibrium to nonequilibrium, and vice versa

Thumbnail
View/Open
DickeReview_v20.pdf (873.9Kb)
Date
16/10/2018
Author
Kirton, Peter
Roses, Mor M.
Keeling, Jonathan
Torre, Emanuele G. Dalla
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two-level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean-field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium, but its experimental realizations required driven-dissipative systems. In this Progress Report, we offer an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition, and the distinction between equilibrium and nonequilibrium conditions. In addition, we explain the fundamental difference between the superradiant phase transition and the more common lasing transition. Our report mostly focuses on the steady states of single-mode optical cavities, but we also mention some aspects of real-time dynamics, as well as applications to multimode cavities, superconducting circuits, and trapped ions.
Citation
Kirton , P , Roses , M M , Keeling , J & Torre , E G D 2018 , ' Introduction to the Dicke model : from equilibrium to nonequilibrium, and vice versa ' , Advanced Quantum Technologies , vol. Early View , 1800043 . https://doi.org/10.1002/qute.201800043
Publication
Advanced Quantum Technologies
Status
Peer reviewed
DOI
https://doi.org/10.1002/qute.201800043
ISSN
2511-9044
Type
Journal item
Rights
© 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/qute.201800043
Description
P.K. acknowledges support from EPSRC (EP/M010910/1) and the Austrian Academy of Sciences (ÖAW). P.K. and J.K. acknowledge support from EPSRC program “Hybrid Polaritonics” (EP/M025330/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18678

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter