Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHowson, Thomas Alexander
dc.contributor.authorDe Moortel, Ineke
dc.contributor.authorAntolin, Patrick
dc.contributor.authorVan Doorsselaere, Tom
dc.contributor.authorWright, Andrew Nicholas
dc.date.accessioned2019-09-24T11:30:05Z
dc.date.available2019-09-24T11:30:05Z
dc.date.issued2019-11
dc.identifier.citationHowson , T A , De Moortel , I , Antolin , P , Van Doorsselaere , T & Wright , A N 2019 , ' Resonant absorption in expanding coronal magnetic flux tubes with uniform density ' , Astronomy & Astrophysics , vol. 631 , A105 , pp. 1-11 . https://doi.org/10.1051/0004-6361/201936146en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 261333997
dc.identifier.otherPURE UUID: 249ed537-611f-4b2b-831e-b738a83d1e6c
dc.identifier.otherORCID: /0000-0002-1452-9330/work/64360561
dc.identifier.otherORCID: /0000-0002-9877-1457/work/64361045
dc.identifier.otherORCID: /0000-0002-4895-6277/work/66070056
dc.identifier.otherWOS: 000515094900002
dc.identifier.otherScopus: 85085135109
dc.identifier.urihttps://hdl.handle.net/10023/18546
dc.descriptionFunding: UK Science and Technology Facilities Council (consolidated grant ST/N000609/1), the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214); STFC Ernest RutherfordFellowship (grant agreement No. ST/R004285/1) (PA); European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 724326) (TVD); partial supported by the Leverhulme Trust (through research grant RPG-2016-071) (ANW).en
dc.description.abstractAims. We investigate the transfer of energy between a fundamental standing kink mode and azimuthal Alfvén waves within an expanding coronal magnetic flux tube. We consider the process of resonant absorption in a loop with a non-uniform Alfvén frequency profile but in the absence of a radial density gradient. Methods. Using the three dimensional magnetohydrodynamic (MHD) code, Lare3d, we modelled a transversely oscillating magnetic flux tube that expands radially with height. An initially straight loop structure with a magnetic field enhancement was allowed to relax numerically towards a force-free state before a standing kink mode was introduced. The subsequent dynamics, rate of wave damping and formation of small length scales are considered. Results. We demonstrate that the transverse gradient in Alfvén frequency required for the existence of resonant field lines can be associated with the expansion of a high field-strength flux tube from concentrated flux patches in the lower solar atmosphere. This allows for the conversion of energy between wave modes even in the absence of the transverse density profile typically assumed in wave heating models. As with standing modes in straight flux tubes, small scales are dominated by the vorticity at the loop apex and by currents close to the loop foot points. The azimuthal Alfvén wave exhibits the structure of the expanded flux tube and is therefore associated with smaller length scales close to the foot points of the flux tube than at the loop apex. Conclusions. Resonant absorption can proceed throughout the coronal volume, even in the absence of visible, dense, loop structures. The flux tube and MHD waves considered are difficult to observe and our model highlights how estimating hidden wave power within the Sun’s atmosphere can be problematic. We highlight that, for standing modes, the global properties of field lines are important for resonant absorption and coronal conditions at a single altitude will not fully determine the nature of MHD resonances. In addition, we provide a new model in partial response to the criticism that wave heating models cannot self-consistently generate or sustain the density profile upon which they typically rely.
dc.format.extent11
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rightsCopyright © 2019 ESO. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1051/0004-6361/201936146en
dc.subjectSun: coronaen
dc.subjectSun: magnetic fieldsen
dc.subjectSun: oscillationsen
dc.subjectMagnetohydrodynamics (MHD)en
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectT-NDASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleResonant absorption in expanding coronal magnetic flux tubes with uniform densityen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorThe Leverhulme Trusten
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201936146
dc.description.statusPeer revieweden
dc.identifier.grantnumberST/N000609/1en
dc.identifier.grantnumber647214en
dc.identifier.grantnumberST/R004285/1en
dc.identifier.grantnumberRPG-2016-071en


This item appears in the following Collection(s)

Show simple item record