St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Eruptions and flaring activity in emerging quadrupolar regions

Thumbnail
View/Open
Syntelis_2019_Eruption_and_flaring_A_A_AAM.pdf (12.45Mb)
Date
10/2019
Author
Syntelis, P.
Lee, E. J.
Fairbairn, C. W.
Archontis, V.
Hood, A. W.
Keywords
Sun: activity
Sun: corona
Sun: magnetic fields
Magnetohydrodynamics (MHD)
Methods: numerical
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. Solar observations suggest that some of the most dynamic active regions are associated with complex photospheric magnetic configurations such as quadrupolar regions, and especially those that have a δ-spot configuration and a strong polarity inversion line (PIL). Aims. We study the formation and eruption of magnetic flux ropes in quadrupolar regions. Methods. We performed 3D magnetohydrodynamics simulations of the partial emergence of a highly twisted flux tube from the solar interior into a non-magnetised stratified atmosphere. We introduced a density deficit at two places along the length of the subphotospheric flux tube to emerge as two Ω-shaped loops, forming a quadrupolar region. Results. At the photosphere, the emerging flux forms two initially separated bipoles, which later come in contact, forming a δ-spot central region. Above the two bipoles, two magnetic lobes expand and interact through a series of current sheets at the interface between them. Two recurrent confined eruptions are produced. In both cases, the reconnection between sheared low-lying field lines forms a flux rope. The reconnection between the two lobes higher in the atmosphere forms field lines that retract down and push against the flux rope, creating a current sheet between them. It also forms field lines that create a third magnetic lobe between the two emerged lobes, that later acts as a strapping field. The flux rope eruptions are triggered when the reconnection between the flux ropes and the field above the ropes becomes efficient enough to remove the tension of the overlying field. These reconnection events occur internally in the quadrupolar system, as the atmosphere is non-magnetised. The flux rope of the first, weaker, eruption almost fully reconnects with the overlying field. The flux rope of the second, more energetic, eruption is confined by the overlying strapping field. During the second eruption, the flux rope is enhanced in size, flux, and twist, similar to confined-flare-to-flux-rope observations. Proxies of the emission reveal the two erupting filaments channels. A flare arcade is only formed in the second eruption owing to the longer lasting and more efficient reconnection at the current sheet below the flux rope.
Citation
Syntelis , P , Lee , E J , Fairbairn , C W , Archontis , V & Hood , A W 2019 , ' Eruptions and flaring activity in emerging quadrupolar regions ' , Astronomy & Astrophysics , vol. 630 , A134 , pp. 1-14 . https://doi.org/10.1051/0004-6361/201936246
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201936246
ISSN
0004-6361
Type
Journal article
Rights
Copyright © 2019 ESO. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1051/0004-6361/201936246
Description
Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/S000402/1, Royal Society grant RGF/EA/180232, ERC synergy grant “The Whole Sun”.
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2019arXiv190901446S
URI
http://hdl.handle.net/10023/18536

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter