Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBurgess, Belle Helen
dc.contributor.authorDritschel, David Gerard
dc.date.accessioned2019-09-17T23:37:14Z
dc.date.available2019-09-17T23:37:14Z
dc.date.issued2019-05-10
dc.identifier.citationBurgess , B H & Dritschel , D G 2019 , ' Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow ' , Journal of Fluid Mechanics , vol. 866 , R3 . https://doi.org/10.1017/jfm.2019.133en
dc.identifier.issn0022-1120
dc.identifier.otherPURE: 256954972
dc.identifier.otherPURE UUID: 173de1b5-2a59-4972-a27f-f76693f63110
dc.identifier.otherORCID: /0000-0001-9297-8003/work/55901243
dc.identifier.otherScopus: 85063198106
dc.identifier.otherWOS: 000462630800001
dc.identifier.otherORCID: /0000-0001-6489-3395/work/64697754
dc.identifier.urihttps://hdl.handle.net/10023/18498
dc.descriptionFunding: Leverhulme Trust Early Career Fellowship (BHB).en
dc.description.abstractWe present a scaling theory that links the frequency of long frontal waves to the kinetic energy decay rate and inverse transfer of potential energy in freely evolving equivalent barotropic turbulence. The flow energy is predominantly potential, and the streamfunction makes the dominant contribution to potential vorticity (PV) over most of the domain, except near PV fronts of width O(LD), where LD is the Rossby deformation length. These fronts bound large vortices within which PV is well-mixed and arranged into a staircase structure. The jets collocated with the fronts support long-wave undulations, which facilitate collisions and mergers between the mixed regions, implicating the frontal dynamics in the growth of potential-energy-containing flow features. Assuming the mixed regions grow self-similarly in time and using the dispersion relation for long frontal waves (Nycander et al., Phys. Fluids A, vol. 5, 1993, pp. 1089–1091) we predict that the total frontal length and kinetic energy decay like t-1/3, while the length scale of the staircase vortices grows like t1/3 . High-resolution simulations confirm our predictions.
dc.format.extent12
dc.language.isoeng
dc.relation.ispartofJournal of Fluid Mechanicsen
dc.rights© 2019, Cambridge University Press. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1017/jfm.2019.133en
dc.subjectQuasi-geostrophic flowsen
dc.subjectVortex dynamicsen
dc.subjectQA Mathematicsen
dc.subjectQC Physicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.subject.lccQCen
dc.titleLong frontal waves and dynamic scaling in freely evolving equivalent barotropic flowen
dc.typeJournal articleen
dc.contributor.sponsorThe Leverhulme Trusten
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.identifier.doihttps://doi.org/10.1017/jfm.2019.133
dc.description.statusNon peer revieweden
dc.date.embargoedUntil2019-09-18
dc.identifier.grantnumberECF-2017-508en


This item appears in the following Collection(s)

Show simple item record