St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mergers, starbursts, and quenching in the Simba simulation

Thumbnail
View/Open
Rodr_guez_Montero_2019_Mergers_starbursts_MNRAS_AAM.pdf (3.972Mb)
Date
12/2019
Author
Rodríguez Montero, Francisco
Davé, Romeel
Wild, Vivienne
Anglés-Alcázar, Daniel
Narayanan, Desika
Keywords
Galaxies: evolution
Galaxies: formation
QA75 Electronic computers. Computer science
QB Astronomy
QC Physics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We use the Simbacosmological galaxy formation simulation to investigate the relationship between major mergers (≤ 4:1), starbursts, and galaxy quenching. Mergers are identified via sudden jumps in stellar mass M∗ well above that expected from in situ star formation, while quenching is defined as going from specific star formation rate sSFR>t−1H to sSFR<0.2t−1H, where tH is the Hubble time. At z≈0−3, mergers show ∼×2−3 higher SFR than a mass-matched sample of star-forming galaxies, but globally represent ≤1% of the cosmic SF budget. At low masses, the increase in SFR in mergers is mostly attributed to an increase in the H2 content, but for M∗≥1010.5M⊙ mergers also show an elevated star formation efficiency suggesting denser gas within merging galaxies. The merger rate for star-forming galaxies shows a rapid increase with redshift ∝(1+z)3.5, but the quenching rate evolves much more slowly, ∝(1+z)0.9; there are insufficient mergers to explain the quenching rate at z≤1.5. Simba first quenches galaxies at z≥3, with a number density in good agreement with observations. The quenching timescales τq are strongly bimodal, with `slow' quenchings (τq∼0.1tH) dominating overall, but `fast' quenchings (τq∼0.01tH) dominating in M∗∼1010−1010.5M⊙ galaxies, likely induced by Simba's jet-mode black hole feedback. The delay time distribution between mergers and quenching events suggests no physical connection to either fast or slow quenching. Hence, Simba predicts that major mergers induce starbursts, but are unrelated to quenching in either fast or slow mode.
Citation
Rodríguez Montero , F , Davé , R , Wild , V , Anglés-Alcázar , D & Narayanan , D 2019 , ' Mergers, starbursts, and quenching in the Simba simulation ' , Monthly Notices of the Royal Astronomical Society , vol. 490 , no. 2 , pp. 2139–2154 . https://doi.org/10.1093/mnras/stz2580
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stz2580
ISSN
0035-8711
Type
Journal article
Rights
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1093/mnras/stz2580
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2019arXiv190712680R
URI
http://hdl.handle.net/10023/18487

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter