Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorDalgarno, Paul A.
dc.contributor.authorJuan-Colás, José
dc.contributor.authorHedley, Gordon James
dc.contributor.authorPiñeiro, Lucas
dc.contributor.authorNovo, Mercedes
dc.contributor.authorPerez-Gonzalez, Cibran
dc.contributor.authorSamuel, Ifor D. W.
dc.contributor.authorLeake, Mark
dc.contributor.authorJohnson, Steven
dc.contributor.authorAl-Soufi, Wajih
dc.contributor.authorPenedo-Esteiro, J. Carlos
dc.contributor.authorQuinn, Steven D.
dc.date.accessioned2019-09-16T15:30:07Z
dc.date.available2019-09-16T15:30:07Z
dc.date.issued2019-09-09
dc.identifier.citationDalgarno , P A , Juan-Colás , J , Hedley , G J , Piñeiro , L , Novo , M , Perez-Gonzalez , C , Samuel , I D W , Leake , M , Johnson , S , Al-Soufi , W , Penedo-Esteiro , J C & Quinn , S D 2019 , ' Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents ' , Scientific Reports , vol. 9 , 12897 . https://doi.org/10.1038/s41598-019-49210-0en
dc.identifier.issn2045-2322
dc.identifier.otherPURE: 260899351
dc.identifier.otherPURE UUID: 6f090580-d022-42ff-b577-2af4fe45c426
dc.identifier.otherScopus: 85071985869
dc.identifier.otherORCID: /0000-0002-5807-5385/work/74872768
dc.identifier.otherWOS: 000484657300021
dc.identifier.urihttps://hdl.handle.net/10023/18482
dc.descriptionFunding: EPSRC (EP/P030017/1).en
dc.description.abstractThe solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofScientific Reportsen
dc.rightsCopyright © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleUnveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergentsen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1038/s41598-019-49210-0
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record