St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes : multiple reaction pathways

Thumbnail
View/Open
pubDehyd_revised.pdf (2.820Mb)
Date
16/06/2010
Author
Sieffert, Nicolas
Buehl, Michael
Keywords
Homogeneous ruthenium
Alpha,beta-unsaturated aldehydes
Organometallic complexes
Noncovalent interactions
Molecular-dynamics
Olefin metathesis
Liquid water
Dehydrogenation
Coordination
Methanol
QD Chemistry
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We report a comprehensive density functional theory (DFT) study of the mechanism of the methanol dehydrogenation reaction catalyzed by [RuH2(H2)(PPh3)3]. Using the B97-D dispersion-corrected functional, four pathways have been fully characterized, which differ in the way the critical beta-hydrogen transfer step is brought about (e.g., by prior dissociation of one PPh3 ligand). All these pathways are found to be competitive (Delta G double dagger = 27.0-32.1 kcal/mol at 150 degrees C) and strongly interlocked. The reaction can thus follow multiple reaction channels, a feature which is expected to be at the origin of the good kinetics of this system. Our results also point to the active role of PPh3 ligands, which undergo significant conformational changes as the reaction occurs, and provide insights into the role of the base, which acts as a "co-catalyst" by facilitating proton transfers within active species. Activation barriers decrease on going from methanol to ethanol and 2-propanol substrates, in accord with experiment.
Citation
Sieffert , N & Buehl , M 2010 , ' Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes : multiple reaction pathways ' , Journal of the American Chemical Society , vol. 132 , no. 23 , pp. 8056-8070 . https://doi.org/10.1021/ja101044c
Publication
Journal of the American Chemical Society
Status
Peer reviewed
DOI
https://doi.org/10.1021/ja101044c
ISSN
0002-7863
Type
Journal article
Rights
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/ja101044c
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/1847

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter