Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes : multiple reaction pathways
View/ Open
Date
16/06/2010Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We report a comprehensive density functional theory (DFT) study of the mechanism of the methanol dehydrogenation reaction catalyzed by [RuH2(H2)(PPh3)3]. Using the B97-D dispersion-corrected functional, four pathways have been fully characterized, which differ in the way the critical beta-hydrogen transfer step is brought about (e.g., by prior dissociation of one PPh3 ligand). All these pathways are found to be competitive (Delta G double dagger = 27.0-32.1 kcal/mol at 150 degrees C) and strongly interlocked. The reaction can thus follow multiple reaction channels, a feature which is expected to be at the origin of the good kinetics of this system. Our results also point to the active role of PPh3 ligands, which undergo significant conformational changes as the reaction occurs, and provide insights into the role of the base, which acts as a "co-catalyst" by facilitating proton transfers within active species. Activation barriers decrease on going from methanol to ethanol and 2-propanol substrates, in accord with experiment.
Citation
Sieffert , N & Buehl , M 2010 , ' Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes : multiple reaction pathways ' , Journal of the American Chemical Society , vol. 132 , no. 23 , pp. 8056-8070 . https://doi.org/10.1021/ja101044c
Publication
Journal of the American Chemical Society
Status
Peer reviewed
ISSN
0002-7863Type
Journal article
Rights
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/ja101044c
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.