St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Orderings on words and permutations

Thumbnail
View/Open
MatthewMcDevittPhDThesis.pdf (888.0Kb)
Date
03/12/2019
Author
McDevitt, Matthew
Supervisor
Ruškuc, Nik
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Abstract
Substructure orderings are ubiquitous throughout combinatorics and all of mathematics. In this thesis we consider various orderings on words, as well as the consecutive involvement ordering on permutations. Throughout there will be a focus on deciding certain order-theoretic properties, primarily the properties of being well-quasi-ordered (WQO) and of being atomic. In Chapter 1, we establish the background material required for the remainder of the thesis. This will include concepts from order theory, formal language theory, automata theory, and the theory of permutations. We also introduce various orderings on words, and the consecutive involvement ordering on permutations. In Chapter 2, we consider the prefix, suffix and factor orderings on words. For the prefix and suffix orderings, we give a characterisation of the regular languages which are WQO, and of those which are atomic. We then consider the factor ordering and show that the atomicity is decidable for finitely-based sets. We also give a new proof that WQO is decidable for finitely-based sets, which is a special case of a result of Atminas et al. In Chapters 3 and 4, we consider some general families of orderings on words. In Chapter 3 we consider orderings on words which are rational, meaning that they can be generated by transducers. We discuss the class of insertion relations introduced in a paper by the author, and introduce a generalisation. In Chapter 4, we consider three other variations of orderings on words. Throughout these chapters we prove various decidability results. In Chapter 5, we consider the consecutive involvement on permutations. We generalise our results for the factor ordering on words to show that WQO and atomicity are decidable. Through this investigation we answer some questions which have been asked (and remain open) for the involvement on permutations.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Pure Mathematics Theses
URI
http://hdl.handle.net/10023/18465

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter