St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of equilibrium isotopic fractionation of the gypsum/bassanite/water system using first-principles calculations

Thumbnail
View/Open
Liu_2018_GCA_prediction_AAM.pdf (1.439Mb)
Liu_2020_Prediction_of_equilibrium_GeCA_CC.pdf (997.0Kb)
Date
01/01/2019
Author
Liu, Tao
Artacho, Emilio
Gázquez, Fernando
Walters, Gregory
Hodell, David
Keywords
Gypsum
Bassanite
Fractionation factor
First-principles
GE Environmental Sciences
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The stable isotopes (18O/16O, 17O/16O and 2H/1H) of structurally-bound water (also called hydration water) in gypsum (CaSO4•2H2O) and bassanite (CaSO4•0.5H2O) can be used to reconstruct the isotopic composition of paleo-waters. Understanding the variability of the isotope fractionation factors between the solution and the solid (α17Omineral-water, α18Omineral-water and αDmineral-water) is crucial for applying this proxy to paleoclimatic research. Here we predict the theoretical equilibrium fractionation factors for triple oxygen and hydrogen isotopes in the gypsum-water and bassanite-water systems between 0 °C and 60 °C. We apply first-principles using density functional theory within the harmonic approximation. Our theoretical results for α18Ogypsum-water (1.00347±0.00037) are in agreement with previous experimental studies, whereas αDgypsum-water agrees only at temperatures above 25 °C. At lower temperatures, the experimental values of αDgypsum-water are consistently higher than theoretical values (e.g. 0.9749 and 0.9782, respectively, at 3 °C), which can be explained by kinetic effects that affect gypsum precipitation under laboratory conditions at low temperature. We predict that α18Obassanite-water is similar to α18Ogypsum-water in the temperature range of 0 °C to 60 °C. Both α18Ogypsum-water and α18Obassanite-water show a small temperature dependence of ∼0.0000122 per °C, which is negligible for most paleoclimate studies. The theoretical relationship between α17Ogypsum-water and α18Ogypsum-water (θ =lnα17Olnα18O) from 0 °C to 60 °C is 0.5274±0.00063. The relationship is very insensitive to temperature (0.00002 per °C). The fact that δ18O values of gypsum hydration water are greater than free water (α18Ogypsum-water >1) whereas δD values of gypsum hydration water are less than free water (αDgypsum-water <1) is explained by phonon theory. We conclude that calculations from first-principles using density functional theory within the harmonic approximation can accurately predict fractionation factors between structurally-bound water of minerals and free water.
Citation
Liu , T , Artacho , E , Gázquez , F , Walters , G & Hodell , D 2019 , ' Prediction of equilibrium isotopic fractionation of the gypsum/bassanite/water system using first-principles calculations ' , Geochimica et Cosmochimica Acta , vol. 244 , pp. 1-11 . https://doi.org/10.1016/j.gca.2018.08.045
Publication
Geochimica et Cosmochimica Acta
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.gca.2018.08.045
ISSN
0016-7037
Type
Journal article
Rights
© 2018 Elsevier Ltd. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1016/j.gca.2018.08.045
 
Copyright © 2018 The Authors. Published by Elsevier Ltd.This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Description
This research was supported by the ERC WIHM Project [#339694] to DAH.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18422

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter