Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorSunko, Veronika
dc.contributor.authorMorales, Edgar Abarca
dc.contributor.authorMarković, Igor
dc.contributor.authorBarber, Mark E.
dc.contributor.authorMilosavljević, Dijana
dc.contributor.authorMazzola, Federico
dc.contributor.authorSokolov, Dmitry A.
dc.contributor.authorKikugawa, Naoki
dc.contributor.authorCacho, Cephise
dc.contributor.authorDudin, Pavel
dc.contributor.authorRosner, Helge
dc.contributor.authorHicks, Clifford W.
dc.contributor.authorKing, Philip D. C.
dc.contributor.authorMackenzie, Andrew. P.
dc.date.accessioned2019-08-20T14:30:06Z
dc.date.available2019-08-20T14:30:06Z
dc.date.issued2019-08-19
dc.identifier260353980
dc.identifier4fe28ac7-152d-430d-be71-37e61e43e946
dc.identifier85071048601
dc.identifier000493557400001
dc.identifier.citationSunko , V , Morales , E A , Marković , I , Barber , M E , Milosavljević , D , Mazzola , F , Sokolov , D A , Kikugawa , N , Cacho , C , Dudin , P , Rosner , H , Hicks , C W , King , P D C & Mackenzie , A P 2019 , ' Direct observation of a uniaxial stress-driven Lifshitz transition in Sr 2 RuO 4 ' , npj Quantum Materials , vol. 4 , 46 . https://doi.org/10.1038/s41535-019-0185-9en
dc.identifier.issn2397-4648
dc.identifier.otherArXiv: http://arxiv.org/abs/1903.09581v1
dc.identifier.urihttps://hdl.handle.net/10023/18341
dc.descriptionFunding: We gratefully acknowledge support from the European Research Council (Grant No. ERC-714193-QUESTDO), the Royal Society, EPSRC for PhD studentship support through grant number EP/L015110/1 (VS).en
dc.description.abstractPressure represents a clean tuning parameter for traversing the complex phase diagrams of interacting electron systems, and as such has proved of key importance in the study of quantum materials. Application of controlled uniaxial pressure has recently been shown to more than double the transition temperature of the unconventional superconductor Sr2RuO4, leading to a pronounced peak in Tc versus strain whose origin is still under active debate. Here we develop a simple and compact method to passively apply large uniaxial pressures in restricted sample environments, and utilise this to study the evolution of the electronic structure of Sr2RuO4 using angle-resolved photoemission. We directly visualise how uniaxial stress drives a Lifshitz transition of the γ-band Fermi surface, pointing to the key role of strain-tuning its associated van Hove singularity to the Fermi level in mediating the peak in Tc. Our measurements provide stringent constraints for theoretical models of the strain-tuned electronic structure evolution of Sr2RuO4. More generally, our experimental approach opens the door to future studies of strain-tuned phase transitions not only using photoemission but also other experimental techniques where large pressure cells or piezoelectric-based devices may be difficult to implement.
dc.format.extent7
dc.format.extent1787189
dc.language.isoeng
dc.relation.ispartofnpj Quantum Materialsen
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectDASen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleDirect observation of a uniaxial stress-driven Lifshitz transition in Sr2RuO4en
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1038/s41535-019-0185-9
dc.description.statusPeer revieweden
dc.identifier.grantnumber714193en
dc.identifier.grantnumberEP/L015110/1en
dc.identifier.grantnumberURF/R/180026en


This item appears in the following Collection(s)

Show simple item record