St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping the structural path for allosteric inhibition of a short-form ATP phosphoribosyltransferase by histidine

Thumbnail
View/Open
Thomson_2019_Mapping_structural_Biochem_3078.pdf (7.855Mb)
Date
16/07/2019
Author
Thomson, Catherine M.
Alphey, Magnus S.
Fisher, Gemma
da Silva, Rafael G
Keywords
QD Chemistry
QH301 Biology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
ATP phosphoribosyltransferase (ATPPRT) catalyses the first step of histidine biosynthesis, being allosterically inhibited by the final product of the pathway. Allosteric inhibition of long-form ATPPRTs by histidine has been extensively studied, but inhibition of short-form ATPPRTs is poorly understood. Short-form ATPPRTs are hetero-octamers formed by four catalytic subunits (HisGS) and four regulatory subunits (HisZ). HisGS alone is catalytically active and insensitive to histidine. HisZ enhances catalysis by HisGS in the absence of histidine but mediates allosteric inhibition in its presence. Here, steady-state and pre-steady-state kinetics establish that histidine is a non-competitive inhibitor of short-form ATPPRT, and that inhibition does not occur by dissociating HisGS from the hetero-octamer. The crystal structure of ATPPRT in complex with histidine and the substrate 5-phospho-α-D-ribosyl-1-pyrophosphate (PRPP) was solved, showing histidine bound solely to HisZ, with four histidine molecules per hetero-octamer. Histidine binding involves the repositioning of two HisZ loops. The histidine-binding loop moves closer to histidine to establish polar contacts. This leads to a hydrogen bond between its Tyr263 and His104 in the Asp101–Leu117 loop. The Asp101–Leu117 loop leads to the HisZ/HisGS interface, and in the absence of histidine its motion prompts HisGS conformational changes responsible for catalytic activation. Following histidine binding, interaction with the histidine-binding loop may prevent the Asp101–Leu117 loop from efficiently sampling conformations conducive to catalytic activation. Tyr263Phe-PaHisZ-containing PaATPPRT, however, is less susceptible though not insensitive to histidine inhibition, suggesting the Tyr263-His104 interaction may be relevant to, yet not solely responsible for transmission of the allosteric signal.
Citation
Thomson , C M , Alphey , M S , Fisher , G & da Silva , R G 2019 , ' Mapping the structural path for allosteric inhibition of a short-form ATP phosphoribosyltransferase by histidine ' , Biochemistry , vol. 58 , no. 28 , pp. 3078-3086 . https://doi.org/10.1021/acs.biochem.9b00282
Publication
Biochemistry
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.biochem.9b00282
ISSN
0006-2960
Type
Journal article
Rights
© 2019, American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY)License, which permits unrestricted use, distribution and reproduction in any medium,provided the author and source are cited.
Description
Funding: This work was supported by a Wellcome Trust Institutional Strategic Support Fund to the University of St Andrews and the Biotechnology and Biological Sciences Research Council (BBSRC) [grant number BB/M010996/1] via an EASTBIO Doctoral Training Partnership studentship to GF. X-ray diffraction data were collected at Diamond Light Source in the UK.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18312

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter