Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYao, Wenjiao
dc.contributor.authorArmstrong, A. Robert
dc.contributor.authorZhou, Xiaolong
dc.contributor.authorSougrati, Moulay-Tahar
dc.contributor.authorKidkhunthod, Pinit
dc.contributor.authorTunmee, Sarayut
dc.contributor.authorSun, Chenghua
dc.contributor.authorSattayaporn, Suchinda
dc.contributor.authorLightfoot, Philip
dc.contributor.authorJi, Bifa
dc.contributor.authorJiang, Chunlei
dc.contributor.authorWu, Nanzhong
dc.contributor.authorTang, Yongbing
dc.contributor.authorCheng, Hui-Ming
dc.date.accessioned2019-08-06T09:30:02Z
dc.date.available2019-08-06T09:30:02Z
dc.date.issued2019-08-02
dc.identifier259379165
dc.identifiercc781542-fa7a-4cb1-92f5-445c753e7d48
dc.identifier000478576800001
dc.identifier85070764520
dc.identifier.citationYao , W , Armstrong , A R , Zhou , X , Sougrati , M-T , Kidkhunthod , P , Tunmee , S , Sun , C , Sattayaporn , S , Lightfoot , P , Ji , B , Jiang , C , Wu , N , Tang , Y & Cheng , H-M 2019 , ' An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox ' , Nature Communications , vol. 10 , 3483 . https://doi.org/10.1038/s41467-019-11077-0en
dc.identifier.issn2041-1723
dc.identifier.otherORCID: /0000-0001-7048-3982/work/62668226
dc.identifier.otherORCID: /0000-0003-1937-0936/work/62668320
dc.identifier.urihttps://hdl.handle.net/10023/18256
dc.descriptionAuthors acknowledge financial support from the National Natural Science Foundation of China (51822210), the Australian Research Council (ARC) for its support through Discover Project (DP 140100193),Shenzhen Peacock Plan (KQJSCX20170331161244761), the Program for Guangdong Innovative and Entrepreneurial Teams (No. 2017ZT07C341), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline.en
dc.description.abstractThe growing demand for advanced lithium-ion batteries calls for the continued development of high-performance positive electrode materials. Polyoxyanion compounds are receiving considerable interest as alternative cathodes to conventional oxides due to their advantages in cost, safety and environmental friendliness. However, polyanionic cathodes reported so far rely heavily upon transition-metal redox reactions for lithium transfer. Here we show a polyanionic insertion material, Li2Fe(C2O4)2, in which in addition to iron redox activity, the oxalate group itself also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution. The current study gives oxalate a role as a family of cathode materials and suggests a direction for the identification and design of electrode materials with polyanionic frameworks.
dc.format.extent9
dc.format.extent3488867
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject.lccQDen
dc.titleAn oxalate cathode for lithium ion batteries with combined cationic and polyanionic redoxen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1038/s41467-019-11077-0
dc.description.statusPeer revieweden
dc.identifier.urlhttps://www.nature.com/articles/s41467-019-11077-0#Sec16en


This item appears in the following Collection(s)

Show simple item record