St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes

Thumbnail
View/Open
Zysman_Colman_2019_JMCC_PyridineSulfone_Preprint.pdf (1.693Mb)
Pyridine_sulfone_JMCC_final.pdf (1.718Mb)
Date
14/06/2019
Author
Rajamallil, Pachaiyappan
Chen, Dongyang
Li, Wenbo
Cordes, David B.
Slawin, Alexandra
Samuel, Ifor D. W.
Zysman-Colman, Eli
Keywords
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Two thermally activated delayed fluorescence (TADF) emitters bearing a new dipyridyl sulfone core as the electron-accepting unit and di-tert-butyl carbazoles as electron-donating units are reported. The two emitters, pDTCz-2DPyS and pDTCz-3DPyS , differ in the regiochemistry of the substitution about the pyridine rings [ pDTCz-2DPyS = 9,9'-(sulfonylbis(pyridine-6,3- diyl))bis(3,6-di-tert-butyl-9H-carbazole); pDTCz-3DPyS = 9,9'-(sulfonylbis(pyridine-5,2-diyl))bis(3,6-di-tert-butyl-9H- carbazole)]. Both compounds show blue emission in the range of 450-465 nm, which is in line with theoretical calculations. They have very similar singlet-triplet energy (ΔEST) gaps (ΔEST = 0.22 eV and 0.21 eV for pDTCz-3DPyS and pDTCz-2DPyS , respectively). pDTCz-2DPyS has a much larger proportion of delayed emission (26.2%) than pDTCz-3DPyS (1.2%)]. The two compounds show comparable photoluminescence quantum yields of 60% in 2,8- bis(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) doped films. The performance of organic light-emitting diodes (OLEDs) depends on the host used. The maximum external quantum efficiency (EQE) in the PPT host of pDTCz-3DPyS is 7.0%, whilst for pDTCz-2DPyS it is 12.4%. High performance is obtained for both materials when bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO) is used as the host, with a maximum EQE of 13.4% for pDTCz-3DPyS and 11.4% for pDTCz-2DPyS . In addition, pDTCz-3DPyS shows pure blue electroluminescence with CIE color coordinates of (0.15, 0.12) compared to pDTCz- 2DPyS with coordinates of (0.15, 0.19).
Citation
Rajamallil , P , Chen , D , Li , W , Cordes , D B , Slawin , A , Samuel , I D W & Zysman-Colman , E 2019 , ' Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes ' , Journal of Materials Chemistry C , vol. 7 , no. 22 , pp. 6664-6671 . https://doi.org/10.1039/C9TC01498E
Publication
Journal of Materials Chemistry C
Status
Peer reviewed
DOI
https://doi.org/10.1039/C9TC01498E
ISSN
2050-7526
Type
Journal article
Rights
[Preprint] © 2019 the Authors. This work has been made available online in accordance with the publisher’s policies. This is the author created submitted manuscript prior to peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1039/C9TC01498E
 
[Accepted manuscript]. © 2019 the Authors. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/ 10.1039/C9TC01498E
Description
The authors are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for support from grants EP/P010482/1 and EP/R035164/1. P. Rajamalli acknowledges support from a Marie Skłodowska-Curie Individual Fellowship (MCIF; No. 749557). Dongyang Chen and Wenbo Li thank the China Scholarship Council (grant numbers 201603780001 and 201708060003).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18227

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter