St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed self-monitoring sensor networks via Markov switching Dynamic Linear Models

Thumbnail
View/Open
Fang_2019_Distributed_self_SASO_AAM.pdf (1.291Mb)
Date
16/06/2019
Author
Fang, Lei
Ye, Juan
Dobson, Simon Andrew
Keywords
Self-management
Sensor networks
Machine learning
DLM
Markov switching model
State space model
Hybrid dynamic network
QA75 Electronic computers. Computer science
T Technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Wireless sensor networks empowered with low-cost sensing devices and wireless communications present an opportunity to enable continuous, fine-grained data collection over a wide environment. However, the quality of data collected is susceptible to the hardware conditions and also adversarial external factors such as high variance in temperature and humidity. Over time, the sensors report erroneous readings, which deviate from true readings. To tackle the problem, we propose an efficient self-monitoring, self-managing and self-adaptive sensing framework based on a dynamic hybrid Bayesian network that combines Hidden Markov Model and Dynamic Linear Model. The framework does not only enable automatic on-line inference of true readings robustly but also monitor the working status of sensor nodes at the same time, which can uncover important insights on hardware management. The whole process also benefits from the derived approximation algorithm and thus supports on-line one-pass computation with minimum human intervention, which make the accurate formal inference affordable for distributed edge processing.
Citation
Fang , L , Ye , J & Dobson , S A 2019 , Distributed self-monitoring sensor networks via Markov switching Dynamic Linear Models . in Proceedings 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2019) . , 8780572 , IEEE Computer Society , pp. 33-42 , 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2019) , Umeå , Sweden , 16/06/19 . https://doi.org/10.1109/SASO.2019.00014
 
conference
 
Publication
Proceedings 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2019)
DOI
https://doi.org/10.1109/SASO.2019.00014
Type
Conference item
Rights
© 2019, IEEE. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1109/SASO.2019.00014
Collections
  • University of St Andrews Research
URL
https://www.simondobson.org/static/sd/softcopy/saso-ms-dlm-19.pdf
URI
http://hdl.handle.net/10023/18201

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter