St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous-variable quantum digital signatures over insecure channels

Thumbnail
View/Open
PhysRevA.99.032341.pdf (537.4Kb)
Date
03/2019
Author
Thornton, Matthew
Scott, Hamish
Croal, Callum
Korolkova, Natalia
Keywords
QA75 Electronic computers. Computer science
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Digital signatures ensure the integrity of a classical message and the authenticity of its sender. Despite their far-reaching use in modern communication, currently used signature schemes rely on computational assumptions and will be rendered insecure by a quantum computer. We present a quantum digital signatures (QDS) scheme whose security is instead based on the impossibility of perfectly and deterministically distinguishing between quantum states. Our continuous-variable (CV) scheme relies on phase measurement of a distributed alphabet of coherent states and allows for secure message authentication against a quantum adversary performing collective beamsplitter and entangling-cloner attacks. Crucially, in the CV setting we allow for an eavesdropper on the quantum channels and yet retain shorter signature lengths than previous protocols with no eavesdropper. This opens up the possibility to implement CV QDS alongside existing CV quantum key distribution platforms with minimal modification.
Citation
Thornton , M , Scott , H , Croal , C & Korolkova , N 2019 , ' Continuous-variable quantum digital signatures over insecure channels ' , Physical Review. A, Atomic, molecular, and optical physics , vol. 99 , no. 3 , 032341 . https://doi.org/10.1103/PhysRevA.99.032341
Publication
Physical Review. A, Atomic, molecular, and optical physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevA.99.032341
ISSN
1050-2947
Type
Journal article
Rights
© 2019, American Physical Society. This work has been made available online in accordance with the publisher's policies. This is the final published version of the work, which was originally published at https://doi.org/10.1103/PhysRevA.99.032341
Description
Funding: The authors gratefully acknowledge the support from the Scottish Universities Physics Alliance (SUPA) and the Engineering and Physical Sciences Research Council (EPSRC).
Collections
  • University of St Andrews Research
URL
http://arxiv.org/abs/1812.09749v1
URI
http://hdl.handle.net/10023/18067

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter