St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

X-ray crystallographic analysis of ADORable zeolites and metal-organic frameworks

Thumbnail
View/Open
SusanHenkelisPhDThesis.pdf (19.61Mb)
Date
26/06/2019
Author
Henkelis, Susan Elizabeth
Supervisor
Morris, Russell Edward
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
This thesis largely focuses on the mechanistic analysis of the Assembly-Disassembly- Organisation-Reassembly (ADOR) process through a range of crystallographic techniques including powder X-ray diffraction and Pair Distribution Function (PDF) analysis and subsequent analysis using solid-state kinetics. Chapter 4 describes the development of a new standard protocol to using the ADOR process. The protocol describes the development of a procedure used for identifying the optimum conditions (time of reaction, temperature, acidity, etc.) for the ADOR process. In developing the protocol, Ge-containing UTL zeolites were subjected to hydrolysis conditions using both water and hydrochloric acid as media, which provides an understanding of the effects of temperature and pH on the Disassembly (D) and Organisation (O) steps of the process that define the potential products. Samples were analysed by powder X-ray diffraction to yield a time course for the reaction at each set of conditions. Chapter 5 continues work on the ADOR process and presents the first kinetic study on the two most prominent steps in the process; Disassembly and Organisation. By using solid- state kinetic models, Avrami-Erofeev and its linear equivalent Sharp-Hancock, the dependence on temperature and presence of liquid water was investigated and the activation energy of the rearrangement process quantified. Work on the rearrangement step aimed to understand where the silica species intercalates from and which material formed as the kinetic and thermodynamic product from the reaction. Chapter 6 describes a study into the Disassembly and Organisation steps of the ADOR process through in situ Pair Distribution Function (PDF) analysis. This hopes to shed light on the selectivity of the ADOR process in different media and the mechanism by which the double-four-ring (d4r) breakdown. On a different note, Chapter 7 describes the refinement of synthesis conditions used to prepare poly-crystalline CPO-27-M (MOF-74) with lower concentrations of base and at low temperature. Refinement of the synthesis of single crystal CPO-27-Mg, -Zn and UTSA-74 was undertaken and the necessary components to forming large single crystals understood.
DOI
https://doi.org/10.17630/10023-17923
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/17923

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter