St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The ATP-dependent chromatin remodelling enzyme Uls1 prevents Topoisomerase II poisoning

Thumbnail
View/Open
Swanston_2019_NAR_ATP_dependent_CC.pdf (2.361Mb)
Date
09/07/2019
Author
Swanston, Amy
Zabrady, Katerina
Ferreira, Helder C.
Keywords
QH301 Biology
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Topoisomerase II (Top2) is an essential enzyme that decatenates DNA via a transient Top2-DNA covalent intermediate. This intermediate can be stabilised by a class of drugs termed Top2 poisons, resulting in massive DNA damage. Thus, Top2 activity is a double-edged sword that needs to be carefully controlled to maintain genome stability. We show that Uls1, an ATP-dependent chromatin remodelling (Snf2) enzyme, can alter Top2 chromatin binding and prevent Top2 poisoning in yeast. Deletion mutants of ULS1 are hypersensitive to the Top2 poison acriflavine (ACF), activating the DNA damage checkpoint. We map Uls1’s Top2 interaction domain and show that this, together with its ATPase activity, is essential for Uls1 function. By performing ChIP-seq, we show that ACF leads to a general increase in Top2 binding across the genome. We map Uls1 binding sites and identify tRNA genes as key regions where Uls1 associates after ACF treatment. Importantly, the presence of Uls1 at these sites prevents ACF-dependent Top2 accumulation. Our data reveal the effect of Top2 poisons on the global Top2 binding landscape and highlights the role of Uls1 in antagonising Top2 function. Remodelling Top2 binding is thus an important new means by which Snf2 enzymes promote genome stability.
Citation
Swanston , A , Zabrady , K & Ferreira , H C 2019 , ' The ATP-dependent chromatin remodelling enzyme Uls1 prevents Topoisomerase II poisoning ' , Nucleic Acids Research , vol. 47 , no. 12 , pp. 6172–6183 . https://doi.org/10.1093/nar/gkz362
Publication
Nucleic Acids Research
Status
Peer reviewed
DOI
https://doi.org/10.1093/nar/gkz362
ISSN
0305-1048
Type
Journal article
Rights
Copyright © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
This work was supported by the Biotechnology and Biological Sciences Research Council [BB/M008142/1 to H.C.F.] and the University of St Andrews Bioinformatics Unit is supported by a Wellcome Trust ISSF Grant [105621/Z/14/Z]. Funding for open access charge: Biotechnology and Biological Sciences Research Council [BB/M008142/1].
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17734

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter