Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBodor, Bertalan
dc.contributor.authorCameron, Peter Jephson
dc.contributor.authorSzabó, Csaba
dc.date.accessioned2019-05-08T23:37:12Z
dc.date.available2019-05-08T23:37:12Z
dc.date.issued2018-06
dc.identifier.citationBodor , B , Cameron , P J & Szabó , C 2018 , ' Infinitely many reducts of homogeneous structures ' , Algebra Universalis , vol. 79 , 43 . https://doi.org/10.1007/s00012-018-0526-8en
dc.identifier.issn0002-5240
dc.identifier.otherPURE: 252443305
dc.identifier.otherPURE UUID: 066a12c4-8a7a-499a-90a7-5acd963f7110
dc.identifier.otherScopus: 85046903987
dc.identifier.otherORCID: /0000-0003-3130-9505/work/58055741
dc.identifier.otherWOS: 000431965200002
dc.identifier.urihttp://hdl.handle.net/10023/17671
dc.descriptionFunding: National Research, Development and Innovation Fund of Hungary, financed under the FK 124814 funding scheme (second author).en
dc.description.abstractThis work is dedicated to Tamás E. Schmidt. It is shown that the countably infinite dimensional pointed vector space (the vector space equipped with a constant) over a finite field has infinitely many first order definable reducts. This implies that the countable homogeneous Boolean-algebra has infinitely many reducts.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofAlgebra Universalisen
dc.rights© 2018 Springer International Publishing AG, part of Springer Nature. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1007/s00012-018-0526-8en
dc.subjectHomogenous structureen
dc.subjectReducten
dc.subjectClosed subgroup of automosphismsen
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.titleInfinitely many reducts of homogeneous structuresen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.Pure Mathematicsen
dc.contributor.institutionUniversity of St Andrews.Centre for Interdisciplinary Research in Computational Algebraen
dc.identifier.doihttps://doi.org/10.1007/s00012-018-0526-8
dc.description.statusPeer revieweden
dc.date.embargoedUntil2019-05-09


This item appears in the following Collection(s)

Show simple item record