St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exciton-polaron interactions in polyfluorene films with β phase

Thumbnail
View/Open
Montilla_2018_Exciton_polaron_JPhysChemC_AAM.pdf (700.1Kb)
Date
10/05/2018
Author
Montilla, Francisco
Ruseckas, Arvydas
Samuel, Ifor D. W.
Funder
EPSRC
EPSRC
European Research Council
Grant ID
ep/l017008/1
N/A
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Fluorescence quenching by electric charges is an important loss mechanism in high-brightness organic light emitting diodes (OLEDs) but its effect is difficult to quantify in working devices. Here we combine an electrochemical technique to control the charge density with time-resolved photoluminescence to distinguish between different quenching mechanisms. The material studied was the blue electroluminescent polymer poly(9,9-dioctylfluorenene) with β phase. Our results show that quenching occurs by Förster resonance energy transfer and is mediated by exciton diffusion. We determine the quenching parameters over a wide range of charge concentrations and estimate their impact on the OLED efficiency roll-off at high current density. We find that fluorescence quenching by charges and singlet-triplet exciton annihilation are the two main mechanisms leading to the efficiency roll-off. Our results suggest that hole polarons are not very effective quenchers of singlet excitons which is important for understanding current devices and encouraging for the development of high-brightness OLEDs and lasers.
Citation
Montilla , F , Ruseckas , A & Samuel , I D W 2018 , ' Exciton-polaron interactions in polyfluorene films with β phase ' , Journal of Physical Chemistry C , vol. 122 , no. 18 , pp. 9766-9772 . https://doi.org/10.1021/acs.jpcc.8b01300
Publication
Journal of Physical Chemistry C
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jpcc.8b01300
ISSN
1932-7447
Type
Journal article
Rights
© 2018, American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acs.jpcc.8b01300
Description
The authors acknowledge financial support from the European Research Council (grant 321305), Spanish Ministry of Economy Explora Ciencia Project MAT2013-49534-EXP and the Engineering and Physical Sciences Research Council (grants EP/L017008/1 and EP/J009016/1). I.D.W.S. also acknowledges support from a Royal Society Wolfson Research Merit Award.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17509

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter