Energy transport in a disordered spin chain with broken U(1) symmetry : diffusion, subdiffusion, and many-body localization
Date
05/11/2018Funder
Grant ID
EP/I031014/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We explore the physics of the disordered XYZ spin chain using two complementary numerical techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block decimation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above this critical value, energy transport becomes increasingly subdiffusive. Fourth, the many-body localization transition moves to significantly higher disorder strengths as the XY anisotropy is increased. We discuss these results, and their relation to our current physical picture of subdiffusion in the approach to many-body localization.
Citation
Schulz , M , Taylor , S R , Hooley , C A & Scardicchio , A 2018 , ' Energy transport in a disordered spin chain with broken U(1) symmetry : diffusion, subdiffusion, and many-body localization ' , Physical Review. B, Condensed matter and materials physics , vol. 98 , no. 18 , 180201(R) . https://doi.org/10.1103/PhysRevB.98.180201
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
ISSN
1098-0121Type
Journal article
Rights
© 2018, American Physical Society. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1103/PhysRevB.98.180201
Description
Funding: MS and SRT acknowledge financial support from the CM-CDT under EPSRC (UK) grants EP/G03673X/1 and EP/L015110/1. CAH acknowledges financial support from the TOPNES programme under EPSRC (UK) grant number EP/I031014/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.