St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Level set Cox processes

Thumbnail
View/Open
Hilderman_2018_Level_set_Cox_SpatialStat_AAM.pdf (2.178Mb)
Date
12/2018
Author
Hildeman, Anders
Bolin, David
Wallin, Jonas
Illian, Janine B.
Keywords
Point process
Cox process
Level set inversion
Classification
Gaussian fields
QA Mathematics
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
An extension of the popular log-Gaussian Cox process (LGCP) model for spatial point patterns is proposed for data exhibiting fundamentally different behaviors in different subregions of the spatial domain. The aim of the analyst might be either to identify and classify these regions, to perform kriging, or to derive some properties of the parameters driving the random field in one or several of the subregions. The extension is based on replacing the latent Gaussian random field in the LGCP by a latent spatial mixture model specified using a categorically valued random field. This classification is defined through level set operations on a Gaussian random field and allows for standard stationary covariance structures, such as the Matérn family, to be used to model random fields with some degree of general smoothness but also occasional and structured sharp discontinuities. A computationally efficient MCMC method is proposed for Bayesian inference and we show consistency of finite dimensional approximations of the model. Finally, the model is fitted to point pattern data derived from a tropical rainforest on Barro Colorado island, Panama. We show that the proposed model is able to capture behavior for which inference based on the standard LGCP is biased.
Citation
Hildeman , A , Bolin , D , Wallin , J & Illian , J B 2018 , ' Level set Cox processes ' , Spatial Statistics , vol. 28 , pp. 169-193 . https://doi.org/10.1016/j.spasta.2018.03.004
Publication
Spatial Statistics
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.spasta.2018.03.004
ISSN
2211-6753
Type
Journal article
Rights
© 2018 Elsevier Ltd. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/https://doi.org/10.1016/j.spasta.2018.03.004
Description
The authors gratefully acknowledge the financial support from the Knut and Alice Wallenberg Foundation, the Swedish Research Council Grant 2016-04187, and the ÅForsk foundation. Numerous organizations have provided funding, principally the U.S. National Science Foundation, and hundreds of field workers have contributed. The Barro Colorado soil survey was funded by NSFDEB021104, 021115, 0212284, 0212818 and OISE0314581 as well as the STRI Soils Initiative and CTFS.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17433

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter