Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHan, Hyeon
dc.contributor.authorPark, Jucheol
dc.contributor.authorNam, Sang Yeol
dc.contributor.authorChoi, Gyeong Man
dc.contributor.authorParkin, Stuart S.P.
dc.contributor.authorJang, Hyun Myung
dc.contributor.authorIrvine, John T. S.
dc.date.accessioned2019-04-01T12:30:21Z
dc.date.available2019-04-01T12:30:21Z
dc.date.issued2019-12-01
dc.identifier258154289
dc.identifierce21ebc2-a3e1-4a96-84f7-e504c0719c3f
dc.identifier85063751779
dc.identifier000462858400003
dc.identifier.citationHan , H , Park , J , Nam , S Y , Choi , G M , Parkin , S S P , Jang , H M & Irvine , J T S 2019 , ' Lattice strain-enhanced exsolution of nanoparticles in thin films ' , Nature Communications , vol. 10 , 1471 . https://doi.org/10.1038/s41467-019-09395-4en
dc.identifier.issn2041-1723
dc.identifier.otherORCID: /0000-0002-8394-3359/work/68280616
dc.identifier.urihttps://hdl.handle.net/10023/17412
dc.descriptionThis work was supported by the National Research Foundation (NRF) Grant funded by the Korean Government (MSIP Grant No.2016R 1D1A1B 03933253). J.T.S.I. thanks the EPSRC for support on emergent nanomaterials through grant EP/R023522/1. H.H. and S.S.P.P. acknowledge the support by the Max Planck Society (MPG).en
dc.description.abstractNanoparticles formed on oxide surfaces are of key importance in many fields such as catalysis and renewable energy. Here, we control B-site exsolution via lattice strain to achieve a high degree of exsolution of nanoparticles in perovskite thin films: more than 1100 particles μm−2 with a particle size as small as ~5 nm can be achieved via strain control. Compressive-strained films show a larger number of exsolved particles as compared with tensile-strained films. Moreover, the strain-enhanced in situ growth of nanoparticles offers high thermal stability and coking resistance, a low reduction temperature (550 oC), rapid release of particles, and wide tunability. The mechanism of lattice strain-enhanced exsolution is illuminated by thermodynamic and kinetic aspects, emphasizing the unique role of the misfit-strain relaxation energy. This study provides critical insights not only into the design of new forms of nanostructures but also applications ranging from catalysis, energy conversion/storage, nano-composites, nano-magnetism, to nano-optics.
dc.format.extent8
dc.format.extent2251718
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject.lccQDen
dc.titleLattice strain-enhanced exsolution of nanoparticles in thin filmsen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1038/s41467-019-09395-4
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R023522/1en


This item appears in the following Collection(s)

Show simple item record